OpenCV图像相似性比对算法

news2025/4/13 0:52:57

背景

        在做图像处理或者计算机视觉相关的项目的时候,很多时候需要我们对当前获得的图像和上一次的图像做相似性比对,从而找出当前图像针对上一次的图像的差异性和变化点,这需要用到OpenCV中的一些图像相似性和差异性的比对算法,在OpenCV-Python库中,有几种可以用来比较两幅图片差异的算法,以下是其中一些常用的算法:结构相似性指数,均方误差,峰值信噪比,结构相似性指数加权直方图

环境

win10  64位企业版系统

python版本:3.6.8 (x64)

opencv版本:3.4.2.16

IDE:pycharm2017(Ananconda  3.5.2)

特别说明:不同的OpenCV-Python库的版本,每种算法的名称会有一定的差别。

算法

结构相似性指数(Structural Similarity Index, SSIM)

        SSIM算法通过比较两幅图片的亮度对比度结构信息来评估它们的相似性。在OpenCV中,可以使用cv2.SIFT_create()函数来计算两幅图片的SSIM指数。

代码示例:

import cv2
import numpy as np

def ssim(img1, img2):
    # 将图像转换为灰度图像
    gray_img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
    gray_img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

    # 计算图像的均值和方差
    mean1, mean2 = np.mean(gray_img1), np.mean(gray_img2)
    var1, var2 = np.var(gray_img1), np.var(gray_img2)

    # 计算协方差和SSIM指数
    cov = np.cov(gray_img1.flatten(), gray_img2.flatten())[0, 1]
    c1 = (0.01 * 255) ** 2
    c2 = (0.03 * 255) ** 2
    ssim = (2 * mean1 * mean2 + c1) * (2 * cov + c2) / ((mean1 ** 2 + mean2 ** 2 + c1) * (var1 + var2 + c2))

    return ssim

# 读取两幅图像
image1 = cv2.imread('0.jpg')
image2 = cv2.imread('1.jpg')

# 计算两幅图像的SSIM指数
ssim_index = ssim(image1, image2)

# 打印SSIM指数
print("SSIM Index:", ssim_index)

输入两幅“0.jpg”和“1.jpg”的图像,运行即可以得到比对的结果:

在高版本的OpenCV中,自带了创建SSIM对象的函数,可以直接调用: 

import cv2

# 读取两幅图像
image1 = cv2.imread('image1.png')
image2 = cv2.imread('image2.png')

# 将图像转换为灰度图像
gray_image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
gray_image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)

# 创建SSIM对象
ssim = cv2.SIFT_create()

# 计算两幅图像的SSIM指数
ssim_index = ssim.compare(gray_image1, gray_image2)

# 打印SSIM指数
print("SSIM Index:", ssim_index)

在上述代码中,首先使用cv2.imread()函数读取两幅图像。然后,使用cv2.cvtColor()函数将图像转换为灰度图像,因为SSIM算法只适用于灰度图像。接下来,创建SSIM对象,并使用其compare()方法计算两幅图像的SSIM指数。最后,打印SSIM指数。

请注意,cv2.SIFT_create()函数在该示例中用于创建SSIM对象,但它实际上是用于创建尺度不变特征变换(Scale-Invariant Feature Transform, SIFT)对象的函数。在OpenCV-Python库中,SIFT对象也可以用于计算SSIM指数。

均方误差(Mean Squared Error, MSE)

        MSE算法计算两幅图片每个像素之间的差异,并计算它们的平均值。MSE值越小,表示两幅图片越相似。在OpenCV中,可以使用cv2.absdiff()cv2.mean()函数来计算两幅图片的MSE值。

import cv2
import numpy as np

def mse(img1, img2):
    # 计算两个图像的差异
    diff = cv2.absdiff(img1, img2)
    diff_squared = diff ** 2

    # 计算均方误差
    mse = np.mean(diff_squared)

    return mse

# 读取两幅图像
image1 = cv2.imread('0.jpg')
image2 = cv2.imread('1.jpg')

# 调整图像的大小,使其具有相同的尺寸
image1 = cv2.resize(image1, (image2.shape[1], image2.shape[0]))

# 计算两幅图像的均方误差
mse_value = mse(image1, image2)

# 打印均方误差
print("MSE:", mse_value)

 

        在上述代码中,mse()函数计算了两幅图像的均方误差。首先,使用cv2.absdiff()函数计算两个图像之间的差异,并将差异值的平方存储在diff_squared中。然后,使用np.mean()函数计算差异平方的平均值,得到均方误差。最后,返回均方误差值。

请注意,在比较两个图像之前,我们还调整了它们的大小,以确保它们具有相同的尺寸。这是因为均方误差是基于像素级别的比较,需要确保两幅图像具有相同的大小。

峰值信噪比(Peak Signal-to-Noise Ratio, PSNR)

        PSNR算法通过计算两幅图片的MSE值,并将其转换为对数尺度,来评估它们的相似性。PSNR值越大,表示两幅图片越相似。在OpenCV中,可以使用cv2.PSNR()函数来计算两幅图片的PSNR值。

import cv2
import numpy as np

def psnr(img1, img2):
    # 计算两个图像的均方误差
    mse = np.mean((img1 - img2) ** 2)

    # 计算峰值信噪比
    psnr = 10 * np.log10((255 ** 2) / mse)

    return psnr

# 读取两幅图像
image1 = cv2.imread('0.jpg')
image2 = cv2.imread('1.jpg')

# 调整图像的大小,使其具有相同的尺寸
image1 = cv2.resize(image1, (image2.shape[1], image2.shape[0]))

# 将图像转换为浮点数类型
image1 = image1.astype(np.float64)
image2 = image2.astype(np.float64)

# 计算两幅图像的峰值信噪比
psnr_value = psnr(image1, image2)

# 打印峰值信噪比
print("PSNR:", psnr_value)

        在上述代码中,psnr()函数计算了两幅图像的峰值信噪比。首先,计算两个图像之间的均方误差(MSE),即差异的平方的平均值。然后,使用np.log10()函数计算峰值信噪比,其中255是像素值的最大值。最后,返回峰值信噪比值。请注意,为了计算峰值信噪比,我们将图像的数据类型转换为浮点数类型,以避免溢出。这是因为峰值信噪比是基于像素级别的比较,需要进行数值计算。

结构相似性指数加权直方图(Structural Similarity Index Weighted Histogram, SSIM-WH)

        SSIM-WH算法通过将SSIM指数和直方图相似性组合起来,来评估两幅图片的相似性。在OpenCV中,可以使用cv2.compareHist()函数来计算两幅图片的直方图相似性。

import cv2

def compare_hist(img1, img2):
    # 将图像转换为HSV颜色空间
    img1_hsv = cv2.cvtColor(img1, cv2.COLOR_BGR2HSV)
    img2_hsv = cv2.cvtColor(img2, cv2.COLOR_BGR2HSV)

    # 计算图像的直方图
    hist1 = cv2.calcHist([img1_hsv], [0, 1], None, [180, 256], [0, 180, 0, 256])
    hist2 = cv2.calcHist([img2_hsv], [0, 1], None, [180, 256], [0, 180, 0, 256])

    # 归一化直方图
    cv2.normalize(hist1, hist1, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX)
    cv2.normalize(hist2, hist2, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX)

    # 计算直方图相似性
    similarity = cv2.compareHist(hist1, hist2, cv2.HISTCMP_CORREL)

    return similarity

# 读取两幅图像
image1 = cv2.imread('0.jpg')
image2 = cv2.imread('1.jpg')

# 调整图像的大小,使其具有相同的尺寸
image1 = cv2.resize(image1, (image2.shape[1], image2.shape[0]))

# 计算两幅图像的相似性
similarity = compare_hist(image1, image2)

# 打印相似性度量值
print("Similarity:", similarity)

        在上述代码中,compare_hist()函数比较了两幅图像的相似性。首先,将图像转换为HSV颜色空间。然后,使用cv2.calcHist()函数计算图像的直方图。这里使用了2D直方图,其中通道0和1表示H(色调)和S(饱和度)通道。接下来,使用cv2.normalize()函数对直方图进行归一化处理,以便进行比较。最后,使用cv2.compareHist()函数计算直方图之间的相似性度量。cv2.HISTCMP_CORREL参数表示使用相关性作为相似性度量。返回的相似性度量值越接近1,表示两幅图像越相似。请注意,这只是一种比较图像相似性的方法之一。根据具体的需求,可能需要使用其他方法来比较图像的相似性

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1290445.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

华为数通---配置端口安全案例

端口安全简介 端口安全(Port Security)通过将接口学习到的动态MAC地址转换为安全MAC地址(包括安全动态MAC、安全静态MAC和Sticky MAC),阻止非法用户通过本接口和交换机通信,从而增强设备的安全性。 组网需…

二百一十三、Flume——Flume拓扑结构介绍

一、目的 最近在看尚硅谷的Flume资料,看到拓扑结构这一块,觉得蛮有意思,于是整理一下Flume的4种拓扑结构 二、拓扑结构 (一)简单串联 1、结构含义 这种模式是将多个flume顺序连接起来了,从最初的sourc…

一键抠图|3个智能AI抠图软件实现抠图自由!

听说你对如何利用AI抠图技术去除白色背景感兴趣?设想一下,你有一张某人站在白色背景前的照片,而你只希望能留下这个人物。在过去,你可能需要花费大量时间和精力手动进行抠图。但现在,AI技术来拯救你了!AI可…

计网实验7

解决:路由器用rip连接,主机通过域名访问,主机之间发送电子邮件 实验步骤 1.搞好部件 2.配好两台主机的ip,掩码,网关 3.连接一下两台主机,由于两台路由器没有连接,所以两台主机也无法连通,丢包率…

搭建个人网盘应用Nextcloud

使用DNF管理软件包 1 使用winscp工具将openeuler-20.03-LTS-x86_64-dvd.iso上传至openeuler虚拟机的/root目录下,然后执行如下命令挂载ISO [rootopenEuler ~]# mount -o loop /root/openEuler-20.03-LTS-everything-x86_64-dvd.iso /mnt/2 添加软件源 [rootope…

智能优化算法应用:基于社交网络算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于社交网络算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于社交网络算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.社交网络算法4.实验参数设定5.算法结果6.参考…

ChatGPT,作为一种强大的自然语言处理模型,具备显著优势,能够帮助您在各个领域取得突破

2023年随着OpenAI开发者大会的召开,最重磅更新当属GPTs,多模态API,未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义,不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车…

vue2+typescript使用高德地图2.0版本

高德地图 webjs api 2.0官网教程 AMap.Driving使用说明 <div class"mmp"><div id"map" ref"mapcontainer"></div></div><script lang"ts"> //安全密钥 window._AMapSecurityConfig{securityJsCode: &qu…

【南京站-EI会议征稿中】第三届网络安全、人工智能与数字经济国际学术会议(CSAIDE 2024)

第三届网络安全、人工智能与数字经济国际学术会议&#xff08;CSAIDE 2024&#xff09; 2024 3rd International Conference on Cyber Security, Artificial Intelligence and Digital Economy 第三届网络安全、人工智能与数字经济国际学术会议&#xff08;CSAIDE 2024&…

〖大前端 - 基础入门三大核心之JS篇㊼〗- BOM基础之window对象

说明&#xff1a;该文属于 大前端全栈架构白宝书专栏&#xff0c;目前阶段免费&#xff0c;如需要项目实战或者是体系化资源&#xff0c;文末名片加V&#xff01;作者&#xff1a;不渴望力量的哈士奇(哈哥)&#xff0c;十余年工作经验, 从事过全栈研发、产品经理等工作&#xf…

SpringBoot3-集成mybatis

1、pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.…

编程过程中出现bug如何应对?

编程过程中出现bug如何应对&#xff1f; 1.找错误原因 如果完全不知道出错的原因&#xff0c;或者说存在着很多错误的有原因&#xff0c;----》控制变量法 例如&#xff0c;昨天我在使用torchrun 多卡并行一个程序的时候&#xff0c;出现了大量的bug, 于是我将报错信息放在网…

uni-app中vue3表单校验失败

目录 1.问题 2.原因及解决方式 3.表单校验方式&#xff08;vue3&#xff09; 1.问题 在app中使用uni-forms表单&#xff0c;并添加校验规则&#xff0c;问题是即使输入内容&#xff0c;表单校验依然失败。 代码&#xff1a; <template><view><uni-forms r…

0基础学java-day14

一、集合 前面我们保存多个数据使用的是数组&#xff0c;那么数组有不足的地方&#xff0c;我们分析一下 1.数组 2 集合 数据类型也可以不一样 3.集合的框架体系 Java 的集合类很多&#xff0c;主要分为两大类&#xff0c;如图 &#xff1a;[背下来] package com.hspedu.c…

2022年第十一届数学建模国际赛小美赛C题人类活动分类解题全过程文档及程序

2022年第十一届数学建模国际赛小美赛 C题 人类活动分类 原题再现&#xff1a; 人类行为理解的一个重要方面是对日常活动的识别和监控。可穿戴式活动识别系统可以改善许多关键领域的生活质量&#xff0c;如动态监测、家庭康复和跌倒检测。基于惯性传感器的活动识别系统用于通过…

10.Java程序设计-基于SSM框架的微信小程序家教信息管理系统的设计与实现

摘要是论文的开篇&#xff0c;用于简要概述研究的目的、方法、主要结果和结论。以下是一个简化的摘要示例&#xff0c;你可以根据实际情况进行修改和扩展&#xff1a; 摘要 随着社会的发展和教育需求的增长&#xff0c;家教服务作为一种个性化的学习方式受到了广泛关注。为了更…

Flink State 状态原理解析 | 京东物流技术团队

一、Flink State 概念 State 用于记录 Flink 应用在运行过程中&#xff0c;算子的中间计算结果或者元数据信息。运行中的 Flink 应用如果需要上次计算结果进行处理的&#xff0c;则需要使用状态存储中间计算结果。如 Join、窗口聚合场景。 Flink 应用运行中会保存状态信息到 …

使用Navicat连接MySQL出现的一些错误

目录 一、错误一&#xff1a;防火墙未关闭 二、错误二&#xff1a;安全组问题 三、错误三&#xff1a;MySQL密码的加密方式 四、错误四&#xff1a;修改my.cnf配置文件 一、错误一&#xff1a;防火墙未关闭 #查看防火墙状态 firewall-cmd --state#关闭防…

大数据可视化项目——基于Python豆瓣电影数据可视化分析系统的设计与实现

大数据可视化项目——基于Python豆瓣电影数据可视化分析系统的设计与实现 本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示&#xff0c;构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据&#xff0c;我们提供了一个全面的电影信息平台…

VS2019 下配置 OpenCV4.6.0 库

一、编辑电脑系统环境变量。 二、打开 VS2019 新建一个C项目。 1.进行Debug和Release的配置 X64 平台。 2.属性配置&#xff1a;VC目录 -> 包含目录 3.属性配置&#xff1a;VC目录 -> 库目录 4.属性配置&#xff1a;链接器 -> 输入 -> 附加依赖项 带 d 的 .lib 为 …