c语言编译优化引发问题

news2024/11/24 17:10:36

问题描述

同样的代码,不优化编译,可以正常执行,经过-O2优化编译后,代码被卡住.整体功能涉及多进程,多线程操作.

问题发现

经过加打印,发现卡在while(a!=0);//死循环,等待特殊事件发生来解开循环
a初始化为-1;
过一会后,另外有个线程,当特定事件发生的时候,将a置为0;
通过加打印,确定当特定事件发生的时候a确实变为了0.
此时,按照代码逻辑,while循环应该结束了.

实际效果是:优化后的代码,在a=0后,依然在while循环.(当前线程没有感知到a已经发生了变化)
关闭优化,重新编译运行,逻辑又恢复正常.

解决

加volatile修饰变量.涉及多线程,多进程共享的变量,加volatile.
特别是多线程,生产者线程写队列,消费者线程读队列,主要的成员,禁止优化
在这里插入图片描述

volatile的本意是“易变的”

  由于访问寄存器的速度要快过RAM,所以编译器一般都会作减少存取外部RAM的优化。比如:
static int flag=0;
int main(void)
{
	...
	while (flag == 0);//等待其他线程通知
	do_something();
	
}

//其他线程
void pthread_2(void)
{
	flag=1;
}
一般说来,volatile用在如下的几个地方:

1、中断服务程序中修改的供其它程序检测的变量需要加volatile;
2、多任务环境下各任务间共享的标志应该加volatile;
3、存储器映射的硬件寄存器通常也要加volatile说明,因为每次对它的读写都可能由不同意义;
另外,以上这几种情况经常还要同时考虑数据的完整性(相互关联的几个标志读了一半被打断了重写),在1中可以通过关中断来实现,2中可以禁止任务调度,3中则只能依靠硬件的良好设计了。

volatile 的含义

volatile总是与优化有关,编译器有一种技术叫做数据流分析,分析程序中的变量在哪里赋值、在哪里使用、在哪里失效,分析结果可以用于常量合并,常量传播等优化,进一步可以死代码消除。但有时这些优化不是程序所需要的,这时可以用volatile关键字禁止做这些优化,volatile的字面含义是易变的,它有下面的作用:
1 不会在两个操作之间把volatile变量缓存在寄存器中。在多任务、中断、甚至setjmp环境下,变量可能被其他的程序改变,编译器自己无法知道,volatile就是告诉编译器这种情况。
2 不做常量合并、常量传播等优化,所以像下面的代码:

volatile int i = 1;
if (i > 0) ...

if的条件不会当作无条件真。
3 对volatile变量的读写不会被优化掉。如果你对一个变量赋值但后面没用到,编译器常常可以省略那个赋值操作,然而对Memory Mapped IO的处理是不能这样优化的。
前面有人说volatile可以保证对内存操作的原子性,这种说法不大准确,其一,x86需要LOCK前缀才能在SMP下保证原子性,其二,RISC根本不能对内存直接运算,要保证原子性得用别的方法,如atomic_inc。
对于jiffies,它已经声明为volatile变量,我认为直接用jiffies++就可以了,没必要用那种复杂的形式,因为那样也不能保证原子性。
你可能不知道在Pentium及后续CPU中,下面两组指令

inc jiffies 
;;
mov jiffies, ?x
inc ?x
mov ?x, jiffies

作用相同,但一条指令反而不如三条指令快。

编译器优化 → C关键字volatile → memory破坏描述符zz

“memory”比较特殊,可能是内嵌汇编中最难懂部分。为解释清楚它,先介绍一下编译器的优化知识,再看C关键字volatile。最后去看该描述符。
1、编译器优化介绍
内存访问速度远不及CPU处理速度,为提高机器整体性能,在硬件上引入硬件高速缓存Cache,加速对内存的访问。另外在现代CPU中指令的执行并不一定严格按照顺序执行,没有相关性的指令可以乱序执行,以充分利用CPU的指令流水线,提高执行速度。以上是硬件级别的优化。再看软件一级的优化:一种是在编写代码时由程序员优化,另一种是由编译器进行优化。编译器优化常用的方法有:将内存变量缓存到寄存器;调整指令顺序充分利用CPU指令流水线,常见的是重新排序读写指令。对常规内存进行优化的时候,这些优化是透明的,而且效率很好。由编译器优化或者硬件重新排序引起的问题的解决办法是在从硬件(或者其他处理器)的角度看必须以特定顺序执行的操作之间设置内存屏障(memory barrier),linux 提供了一个宏解决编译器的执行顺序问题。
void Barrier(void)
这个函数通知编译器插入一个内存屏障,但对硬件无效,编译后的代码会把当前CPU寄存器中的所有修改过的数值存入内存,需要这些数据的时候再重新从内存中读出。
2、C语言关键字volatile
C语言关键字volatile(注意它是用来修饰变量而不是上面介绍的__volatile__)表明某个变量的值可能在外部被改变,因此对这些变量的存取不能缓存到寄存器,每次使用时需要重新存取。该关键字在多线程环境下经常使用,因为在编写多线程的程序时,同一个变量可能被多个线程修改,而程序通过该变量同步各个线程,例如:

DWORD __stdcall threadFunc(LPVOID signal)
{
int* intSignal=reinterpret_cast<int*>(signal);
*intSignal=2;
while(*intSignal!=1)
sleep(1000);
return 0;
}

该线程启动时将intSignal 置为2,然后循环等待直到intSignal 为1 时退出。显然intSignal的值必须在外部被改变,否则该线程不会退出。但是实际运行的时候该线程却不会退出,即使在外部将它的值改为1,看一下对应的伪汇编代码就明白了:

mov ax,signal
label:
if(ax!=1)
goto label

对于C编译器来说,它并不知道这个值会被其他线程修改。自然就把它cache在寄存器里面。记住,C 编译器是没有线程概念的!这时候就需要用到volatile。volatile 的本意是指:这个值可能会在当前线程外部被改变。也就是说,我们要在threadFunc中的intSignal前面加上volatile关键字,这时候,编译器知道该变量的值会在外部改变,因此每次访问该变量时会重新读取,所作的循环变为如下面伪码所示:

label:
mov ax,signal
if(ax!=1)
goto label

3、Memory
有了上面的知识就不难理解Memory修改描述符了,Memory描述符告知GCC:
1)不要将该段内嵌汇编指令与前面的指令重新排序;也就是在执行内嵌汇编代码之前,它前面的指令都执行完毕
2)不要将变量缓存到寄存器,因为这段代码可能会用到内存变量,而这些内存变量会以不可预知的方式发生改变,因此GCC插入必要的代码先将缓存到寄存器的变量值写回内存,如果后面又访问这些变量,需要重新访问内存。
如果汇编指令修改了内存,但是GCC 本身却察觉不到,因为在输出部分没有描述,此时就需要在修改描述部分增加“memory”,告诉GCC 内存已经被修改,GCC 得知这个信息后,就会在这段指令之前,插入必要的指令将前面因为优化Cache 到寄存器中的变量值先写回内存,如果以后又要使用这些变量再重新读取。
使用“volatile”也可以达到这个目的,但是我们在每个变量前增加该关键字,不如使用“memory”方便。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1288998.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

万界星空科技MES系统在工业生产中的应用

万界星空科技MES系统在工业生产中的应用广泛。它适用于各类制造业&#xff0c;包括汽车制造、电子制造、注塑、能源化工、航天航空、食品加工、服装纺织、灯具、电线电缆、电机发动机、印刷包装等行业。 在汽车制造领域&#xff0c;MES系统可以实时追踪和控制整个生产过程&…

sqlite3.44.2的编译

文章目录 sqlite3.44.2的编译概述笔记解决shell.c编译报错的方法整理 - 正常可用的编译脚本过程剩下的事情验证编译出的输出是否可以给工程正常使用?END sqlite3.44.2的编译 概述 想从源码编译一份Sqlite3.44.2出来. 编译sqlite3.44.2前置需要的TCL环境已经编译出来到了, 做…

InnoDB Architecture MySQL 5.7 vs 8.0

innodb-architecture-5-7 innodb-architecture-8-0 图片均来源于MySQL官网

老师如何管理学生?

老师可以通过以下几点来管理学生&#xff1a; 1. 建立积极的关系&#xff1a;老师应该与学生建立积极的关系&#xff0c;鼓励学生参与课堂和课外活动&#xff0c;热情地回应学生的问题和需求。 2. 设定明确的规则&#xff1a;老师应该制定明确的课堂和学校规则&#xff0c;并向…

python基于轻量级卷积神经网络模型ShuffleNetv2开发构建辣椒病虫害图像识别系统

轻量级识别模型在我们前面的博文中已经有过很多实践了&#xff0c;感兴趣的话可以自行移步阅读&#xff1a; 《移动端轻量级模型开发谁更胜一筹&#xff0c;efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》 《基…

DHCP Host Name

文章目录 前言DHCP OptionOption (12) Host Namednsmasq 前言 打开路由器页面&#xff0c;看到下面连接的设备&#xff0c;有的显示设备名称 Tmall-Genie、ESP-C37CE8&#xff0c;而有的直接显示 MAC 地址 D2:B0:XX:XX:XX:XX。 这个名称是哪里来的呢&#xff1f; 这就是我们今…

Excel 动态拼接表头实现导出

public class Column {//单元格内容private String content;//字段名称&#xff0c;用户导出表格时反射调用private String fieldName;//这个单元格的集合private List<Column> listTpamscolumn new ArrayList<Column>();int totalRow;int totalCol;int row;//exc…

用AI在抖音直播做姓氏头像的全新玩法,详细分析制作教程

前段时间在圈子里给大家分享了用AI写艺术字做小红书账号案例玩法&#xff0c;同学们都比较热衷学习。纷纷动手实践。 事实上用AI艺术字变现玩法还有许多。 例如上周末在星球给圈友们分享的一个AI艺术字直播的抖音账号&#xff0c;直播内容形式很简单&#xff0c;就是展现用AI…

机器学习实验六:聚类

系列文章目录 机器学习实验一&#xff1a;线性回归机器学习实验二&#xff1a;决策树模型机器学习实验三&#xff1a;支持向量机模型机器学习实验四&#xff1a;贝叶斯分类器机器学习实验五&#xff1a;集成学习机器学习实验六&#xff1a;聚类 文章目录 系列文章目录一、实验…

SpectralGPT: Spectral Foundation Model 论文翻译3

遥感领域的通用大模型 2023.11.13在CVPR发表 原文地址&#xff1a;[2311.07113] SpectralGPT: Spectral Foundation Model (arxiv.org) E.消融研究 在预训练阶段&#xff0c;我们对可能影响下游任务表现的各种因素进行了全面研究。这些因素包括掩蔽比、ViT patch大小、数据规…

代码随想录第二十五天(一刷C语言)|递增子序列全排列全排列II

创作目的&#xff1a;为了方便自己后续复习重点&#xff0c;以及养成写博客的习惯。 组合和排列问题是在树形结构的叶子节点上收集结果&#xff0c;而子集问题就是取树上所有节点的结果。 一、递增子序列 思路&#xff1a;参考carl文档 已经是递增序列故而不用排序&#xff…

STL源码分析之allocate

空间配置函数allocate //空间配置函数的内部实现原理 //allocate()函数&#xff0c;首先判断区块大小&#xff0c;大于128bytes就调用第一级配置器&#xff0c;小于128bytes就检查对应的free list. //如果free list之内有可用的区块&#xff0c;就直接拿来用&#xff0c;如果没…

Axure RP免费版:详细信息抢先知道

Axure RP收费吗&#xff1f; 是的&#xff0c;AxureRP是一种收费的原型设计工具。它提供了两种选择&#xff1a;免费试用版和付费版。免费试用版可免费使用30天&#xff0c;功能与付费版相同&#xff0c;但导出时会有Axure水印&#xff0c;文件无法保存。付费版分为Pro版和Tea…

实现了一个简单的卡通渲染效果

介绍 简单参考下实现了基本卡通着色渲染效果&#xff1a; 主要包含了描边和内部色块 开始构建了一个场景用于展示光线的变化&#xff0c;并放置了一个角色。 npr_1 接下去加入描边的效果&#xff0c;可以感觉到人物轮廓变明显了。 npr_2 然后再加入了内部的色块变化并调小了点…

Android集成科大讯飞语音识别与语音唤醒简易封装

一、语音唤醒部分 1、首先在科大讯飞官网注册开发者账号 控制台-讯飞开放平台 2、配置唤醒词然后下载sdk 3、选择对应功能下载 4、语音唤醒lib包全部复制到工程目录下 5、把语音唤醒词文件复制到工程的assets目录 6、复制对应权限到AndroidManifest.xml中 <uses-permissio…

同旺科技 USB TO RS-485 定制款适配器--- 拆解(二)

内附链接 1、USB TO RS-485 定制款适配器 ● 支持USB 2.0/3.0接口&#xff0c;并兼容USB 1.1接口&#xff1b; ● 支持USB总线供电&#xff1b; ● 支持Windows系统驱动&#xff0c;包含WIN10 / WIN11系统32 / 64位&#xff1b; ● 支持Windows RT、Linux、Mac OS X、Windo…

【开源】基于Vue+SpringBoot的固始鹅块销售系统

项目编号&#xff1a; S 060 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S060&#xff0c;文末获取源码。} 项目编号&#xff1a;S060&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 鹅块类型模块2.3 固…

CentOS关闭 swap分区

临时关闭swap分区: swapoff -a # 永久关闭swap分区: sed -ri s/.*swap.*/#&/ /etc/fstab 或者 vim /etc/fstab free -m

《opencv实用探索·八》图像模糊之均值滤波、高斯滤波的简单理解

1、前言 什么是噪声&#xff1f; 该像素与周围像素的差别非常大&#xff0c;导致从视觉上就能看出该像素无法与周围像素组成可识别的图像信息&#xff0c;降低了整个图像的质量。这种“格格不入”的像素就被称为图像的噪声。如果图像中的噪声都是随机的纯黑像素或者纯白像素&am…

批量免费AI写作工具,批量免费AI写作软件

人工智能&#xff08;AI&#xff09;的应用在各个领域不断创新。面对繁重的写作任务,我们应该怎么完成&#xff1f;本文将专心分享批量免费AI写作的方法、工具以及选择时需要注意的事项。 批量免费AI写作的方法 利用开源AI模型 一种常见的批量免费AI写作方法是利用开源的AI模…