TinyMPC - CMU (卡耐基梅隆大学)开源的机器人 MPC 控制器

news2024/11/24 2:24:51

系列文章目录

CasADi - 最优控制开源 Python/MATLAB 库


文章目录

  • 系列文章目录
  • 前言
  • 一、机器人硬件对比
    • 1.1 Teensy 上的微控制器基准测试
    • 1.2 机器人硬件
    • 1.3 BibTeX
  • 二、求解器
  • 三、功能(预期)
    • 3.1 高效
    • 3.2 鲁棒
    • 3.3 可嵌入式
    • 3.4 最小依赖性
    • 3.5 高效热启动
    • 3.6 接口
  • 四、在 Ubuntu 安装
    • 4.1 在终端克隆此 repo
    • 4.2 导航至根目录并运行
    • 4.3 执行 CMake 配置步骤
    • 4.4 构建 TinyMPC
  • 五、示例
    • 5.1 运行四旋翼飞行器悬停示例
    • 5.2 运行 codegen 示例,然后在该目录下按照相同的构建步骤进行操作


前言

TinyMPC: 资源受限微控制器上的模型预测控制

作者:Anoushka Alavilli*, Khai Nguyen*, Sam Schoedel*, Brian Plancher, Zachary Manchester

Carnegie Mellon University, Barnard College


模型预测控制(Model-predictive control,MPC)是控制受复杂约束条件(complex constraints)影响的高动态机器人系统(highly dynamic robotic systems)的有力工具。然而,MPC 的计算要求很高,在资源有限的小型机器人平台上实施往往不切实际。我们推出的 TinyMPC 是一种高速 MPC 求解器,内存占用少,适用于小型机器人上常见的微控制器。我们的方法基于交替方向乘子法(ADMM),并利用 MPC 问题的结构来提高效率。我们以最先进的求解器 OSQP 为基准,对 TinyMPC 进行了演示,速度提高了近一个数量级,同时还在一个重达 27 克的四旋翼机器人上进行了硬件实验,演示了高速轨迹跟踪(high-speed trajectory tracking)和动态避障(dynamic obstacle avoidance)。

一、机器人硬件对比

在这里插入图片描述

在这里插入图片描述

1.1 Teensy 上的微控制器基准测试

在这里插入图片描述

1.2 机器人硬件

在这里插入图片描述

1.3 BibTeX

@misc{tinympc,
      title={TinyMPC: Model-Predictive Control on Resource-Constrained Microcontrollers}, 
      author={Anoushka Alavilli and Khai Nguyen and Sam Schoedel and Brian Plancher and Zachary Manchester},
      year={2023},
      eprint={2310.16985},
      archivePrefix={arXiv},
      primaryClass={cs.RO}
}

二、求解器

TinyMPC 求解器是一个数值优化软件包,用于求解默认形式的凸二次规划型模型预测控制(convex quadratic model-predictive control)
minimize: ⁡ 1 2 ( x N − x ˉ N ) T Q f ( x N − x ˉ N ) + ∑ k = 0 N ( 1 2 ( x k − x ˉ k ) T Q ( x k − x ˉ k ) + 1 2 ( u k − u ˉ k ) T R ( u k − u ˉ k ) ) subject  to: ⁡ x k + 1 = A x k + B u k u ‾   ≤   u k   ≤ u ‾ x ‾   ≤   x k   ≤ x ‾ \begin{array}{l l}{\operatorname*{minimize:}}&{\dfrac{1}{2}(x_{N}-\bar{x}_{N})^{T}Q_{f}(x_{N}-\bar{x}_{N})+{{\sum_{k=0}^{N}\bigl(\frac{1}{2}(x_{k}-\bar{x}_{k})^{T}Q(x_{k}-\bar{x}_{k})+\frac{1}{2}\bigl(u_{k}-\bar{u}_{k}\bigr)^{T}R(u_{k}-\bar{u}_{k})\bigr)}}} \\ {\operatorname*{subject\;to:}}&x_{k+1}=A x_{k}+B u_{k} \\ & \overline{{{u}}}\,\leq\,u_{k}\,\leq\underline{{u}} \\ & \overline{{{x}}}\,\leq\,x_{k}\,\leq\underline{{x}} \end{array} minimize:subjectto:21(xNxˉN)TQf(xNxˉN)+k=0N(21(xkxˉk)TQ(xkxˉk)+21(ukuˉk)TR(ukuˉk))xk+1=Axk+Bukuukuxxkx

其中, x k ∈ R n x_{k}\in\mathbb{R}^{n} xkRn u k ∈ R m u_{k}\in\mathbb{R}^{m} ukRm 分别为时间步长为 k 时的状态和控制输入,N 为时间步长(也称为视平线), A ∈ R n × n A\in\mathbb{R}^{n\times n} ARn×n B ∈ R n × m B\in\mathbb{R}^{n\times m} BRn×m 定义了系统动力学, Q ≥ 0 Q\geq0 Q0 R ≻ 0 R\succ0 R0 Q f ≥ 0 Q_{f}\geq0 Qf0 为对称成本权重矩阵, x ~ k {\tilde{x}}_{k} x~k u ˉ k {\bar{u}}_{k} uˉk 是状态和输入参考轨迹。

三、功能(预期)

3.1 高效

它采用基于 ADMM 的定制一阶方法,无需矩阵因式分解。所有其他操作都非常简单。它还利用 MPC 问题中的结构,为基元更新实现了黎卡提递归(Riccati recursion)。

3.2 鲁棒

该算法完全 free,而且不需要对问题数据做任何假设(问题只需要是凸的)。它就是这么简单!

3.3 可嵌入式

它有一个简单的接口,无需内存管理器即可生成定制的可嵌入 C 代码。

3.4 最小依赖性

它只需要 Eigen 就能运行。

3.5 高效热启动

它可以轻松热启动,并且可以缓存矩阵因式分解,从而极其高效地解决参数化问题。

3.6 接口

它为 C、C++、Julia、Matlab 和 Python 提供了接口。

四、在 Ubuntu 安装

4.1 在终端克隆此 repo

git clone git@github.com:TinyMPC/TinyMPC.git

4.2 导航至根目录并运行

cd TinyMPC
mkdir build && cd build

4.3 执行 CMake 配置步骤

cmake ../

4.4 构建 TinyMPC

make 

五、示例

5.1 运行四旋翼飞行器悬停示例

./examples/example_quadrotor_hovering
tracking error at step  0: 2.2472
tracking error at step  1: 2.9549
tracking error at step  2: 2.5478
tracking error at step  3: 2.6331
tracking error at step  4: 3.1375
tracking error at step  5: 3.6413
tracking error at step  6: 4.0214
tracking error at step  7: 4.2898
tracking error at step  8: 4.5070
tracking error at step  9: 4.6282
tracking error at step 10: 4.3689
tracking error at step 11: 3.8895
tracking error at step 12: 3.3699
tracking error at step 13: 2.8681
tracking error at step 14: 2.3877
tracking error at step 15: 1.9336
tracking error at step 16: 1.5516
tracking error at step 17: 1.2588
tracking error at step 18: 1.0420
tracking error at step 19: 0.8844
tracking error at step 20: 0.7680
tracking error at step 21: 0.6773
tracking error at step 22: 0.6009
tracking error at step 23: 0.5316
tracking error at step 24: 0.4658
tracking error at step 25: 0.4024
tracking error at step 26: 0.3416
tracking error at step 27: 0.2839
tracking error at step 28: 0.2305
tracking error at step 29: 0.1822
tracking error at step 30: 0.1393
tracking error at step 31: 0.1023
tracking error at step 32: 0.0715
tracking error at step 33: 0.0472
tracking error at step 34: 0.0301
tracking error at step 35: 0.0217
tracking error at step 36: 0.0218
tracking error at step 37: 0.0251
tracking error at step 38: 0.0279
tracking error at step 39: 0.0291
tracking error at step 40: 0.0290
tracking error at step 41: 0.0277
tracking error at step 42: 0.0254
tracking error at step 43: 0.0227
tracking error at step 44: 0.0197
tracking error at step 45: 0.0167
tracking error at step 46: 0.0140
tracking error at step 47: 0.0116
tracking error at step 48: 0.0097
tracking error at step 49: 0.0082
tracking error at step 50: 0.0072
tracking error at step 51: 0.0067
tracking error at step 52: 0.0065
tracking error at step 53: 0.0065
tracking error at step 54: 0.0065
tracking error at step 55: 0.0064
tracking error at step 56: 0.0063
tracking error at step 57: 0.0062
tracking error at step 58: 0.0061
tracking error at step 59: 0.0059
tracking error at step 60: 0.0058
tracking error at step 61: 0.0056
tracking error at step 62: 0.0055
tracking error at step 63: 0.0054
tracking error at step 64: 0.0053
tracking error at step 65: 0.0052
tracking error at step 66: 0.0052
tracking error at step 67: 0.0052
tracking error at step 68: 0.0052
tracking error at step 69: 0.0052

5.2 运行 codegen 示例,然后在该目录下按照相同的构建步骤进行操作

./examples/example_codegen
A = [1, 1]
[5, 2]
B = [3, 4]
[3, 1]
Q = [1.1,   0]
[  0, 1.1]
R = [2.1,   0]
[  0, 2.1]
rho = 0.1
Kinf converged after 5 iterations
Precomputing finished
Kinf = [   1.36,  0.5335]
[-0.6323, -0.1066]
Pinf = [8.899, 2.664]
[2.664, 2.046]
Quu_inv = [  0.1076, -0.09799]
[-0.09799,  0.09522]
AmBKt = [-0.5502,   1.553]
[-0.1739,  0.5062]
coeff_d2p = [7.438e-06, 8.381e-06]
[2.127e-06, 2.398e-06]
Creating generated code directory at /home/khai/SSD/Code/TinyMPC/generated_code
ERROR OPENING DATA WORKSPACE FILE
Segmentation fault

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1288220.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

第四代可燃气体监测仪监测场景有哪些?

随着城市化进程的加速,燃气作为一种重要的能源在每个城市都得到了广泛的应用。然而燃气泄漏所引发的安全问题也日益增加,为了保障燃气安全并防止泄漏事故的发生,可燃气体监测仪在其中发挥着重要的作用。可燃气体监测仪适用于甲烷气体浓度监测…

从零开始训练一个ChatGPT大模型(低资源,1B3)

macrogpt-prertrain 大模型全量预训练(1b3), 多卡deepspeed/单卡adafactor 源码地址:https://github.com/yongzhuo/MacroGPT-Pretrain.git 踩坑 1. 数据类型fp16不太行, 很容易就Nan了, 最好是fp32, tf32, 2. 单卡如果显存不够, 可以用优化器adafactor, 3. 如果…

基于Java SSM框架实现网络视频播放器管理系统项目【项目源码+论文说明】计算机毕业设计

基于java的SSM框架实现网络视频播放器管理系统演示 摘要 21世纪的今天,随着社会的不断发展与进步,人们对于信息科学化的认识,已由低层次向高层次发展,由原来的感性认识向理性认识提高,管理工作的重要性已逐渐被人们所…

【泛微ecology】将多个字段的数据合并到一个字段

doFieldSQL("select concat(concat(sqr,,),sy) as c from formtable_main_2 where requestid $requestid$ ")

CC++内存管理方式

文章目录 1. C/C内存分布总结 C语言中动态内存管理C内存管理方式new/delete操作内置类型new和delete操作自定义类型c推荐是用new和deleteoperator new与operator delete函数 定位new 1. C/C内存分布 我们先来看下面的一段代码和相关问题 int globalVar 1; static int static…

UE4/UE5 材质实现带框环形进度条

UE4/UE5 材质实现带框环形进度条 此处使用版本:UE4.27 原理:大圆减小圆可以得到圆环,大圆环减小圆环,可以得到圆环外围线框 实现效果: 实现(为了给大家放进一张面前能看的图,我费劲了心思&…

使用 GPTs 手捏一个代码评分器(两小时速成)

嗨!大家好久不见~ ChatGPT 支持 GPTs 也有段时间了,看着应用商店里大神们捏出来的 GPTs , 有些确实很有意思,比如:AI 杠精、模拟面试官、海龟汤… 团子也跃跃欲试,想捏一个 好玩且对大家有用 的 GPTs 出来。 考虑到关注…

如何科学制定营销战略规划?公开课(一)销售罗盘销冠100栏目

上周,销售罗盘&销冠100栏目,重磅推出2场公开课。点击链接查看回放:《如何科学制定营销战略规划?》《如何搭建客户经营体系?》 在第一期公开课《如何科学制定营销战略规划?》中,销售罗盘创始…

Leetcode刷题详解——单词拆分

1. 题目链接:139. 单词拆分 2. 题目描述: 给你一个字符串 s 和一个字符串列表 wordDict 作为字典。请你判断是否可以利用字典中出现的单词拼接出 s 。 **注意:**不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。…

TypeScript枚举类型详情、类型断言

一. 概念 TypeScript中的枚举是一种数据类型,它是一组具有预定义名称的有限值的集合。枚举类型可以使代码更加可读、可维护和易于理解。 类似对象,枚举是将一组无序但极度相关数组集合在一起声明存储。 二. 枚举特性 1. 内部进行了双向赋值 enum Numb…

Socket和Http通信原理

Socket是对TCP/IP协议的封装,Socket本身并不是协议,而是一个调用接口(API),通过Socket,我们才能使用TCP/IP协议,主要利用三元组【ip地址,协议,端口】。 Http协议即超文本传输协议&a…

VIVADO-FFT IP核学习记录

根据用户手册使用IP核 ① 找到user guide / product guide 并打开 ② 找到Customizing and Generating the Core(不同手册可能题目不一样),查看IP核的创建过程中各个参数的意义和设置方法。 ③ 找到port description ,查看接口注释 根据网络教程使用…

WPS Office JS宏实现批量处理Word中的标题和正文的样式

该篇讲解下word文档中的标题和正文批量修改样式,如下图: 前面一篇已讲解了WPS Office宏编辑器操作方法,这里不细讲了,如有不清楚可以查看该篇:https://blog.csdn.net/jiciqiang/article/details/134653657?spm1001.20…

创建腾讯云存储桶---上传图片--使用cos-sdk完成上传

创建腾讯云存储桶—上传图片 注册腾讯云账号https://cloud.tencent.com/login 登录成功,选择右边的控制台 点击云产品,选择对象存储 创建存储桶 填写名称,选择公有读,私有写一直下一步,到创建 选择安全管理&#…

机器人制作开源方案 | 自主型收集餐盘机器人

作者:蔡佳怡、朱启会、郭晨杰、杨昊天、焦家辉 单位:西安外事学院 指导老师:杜喜昭、张燕 1. 产品说明 1.1 设计目的 对于如学校、工厂这种大型食堂,一般的收餐盘模式为用餐人用餐完毕后,把餐盘拿到最近的收餐盘点&…

5.清除SVN用户账号两种方式

常用的客户端又分为2种,第一种是安装在操作系统中的客户端,另外一种是Eclipse的插件 1.操作系统中的客户端 用的小乌龟,在小乌龟里面先把账户信息删除: 1、随便找一个目录,右键tortoiseSVN-------》setting--------…

【DPDK】Trace Library

概述 跟踪是一种用于了解运行中的软件系统中发生了什么的技术。用于跟踪的软件被称为跟踪器,在概念上类似于磁带记录器。记录时,放置在软件源代码中的特定检测点会生成保存在巨大磁带上的事件:跟踪文件。稍后可以在跟踪查看器中打开跟踪文件…

Windows XP安装SVN软件

SVN全称为SubVersion,是Apache开源软件协议下,一个用于代码分布式管理的工具,其孵化的软件产品是TortoiseSVN,该软件是带图形界面的代码管理工具,类似于Git,多了一个图形界面,方便鼠标操作。  …

【每日OJ —— 145. 二叉树的后序遍历】

每日OJ —— 145. 二叉树的后序遍历 1.题目:145. 二叉树的后序遍历2.解法2.1.算法讲解2.2.代码实现2.3.提交通过展示 1.题目:145. 二叉树的后序遍历 2.解法 2.1.算法讲解 1.首先如果在每次每个节点遍历的时候都去为数组开辟空间,这样的效率太…

MATLAB - 评估拟合优度、评价拟合效果

系列文章目录 文章目录 系列文章目录前言一、如何评估拟合优度二、拟合优度统计2.1 SSE - 误差引起的平方和2.2 R 平方2.3 自由度调整 R 平方2.4 均方根误差 三、MATLAB - 评估曲线拟合度3.1 加载数据并拟合多项式曲线3.2 绘制拟合方程、数据、残差和预测范围图3.3 评估指定点3…