(04730)电路分析基础之电阻、电容及电感元件

news2024/11/25 20:29:26



04730电子技术基础 · 语雀(完全笔记)

电阻元件、电感元件和电容元件的概念、伏安关系,以及功率分析是我们以后分析电 路的基础知识。

电阻元件

电阻及其与温度的关系

电阻

电阻元件是对电流呈现阻碍作用的耗能元件,例如灯泡、电热炉等电器。

计算公式为:

式中,ρ为制成电阻的材料电阻率,国际单位为欧姆·米(Ωꞏ m);l 为绕制成电阻的导线长度,国际单位为米(m);S 为绕制成电阻的导线横截面积,国际单位为平方米(m^2 );R 为电阻值,国际单位为欧姆(Ω)。

电阻与温度的关系

电阻元件的电阻值大小一般与温度有关,衡量电阻受温度影 响程度的物理量是温度系数,其定义为温度每升高 1℃ 时电阻值发生变化的百分数。

如果设任一电阻元件在温度 t1时的电阻值为 R1,当温度升高到 t2时电阻值为 R2,则该 电阻在 t1 ~ t2温度范围内的(平均)温度系数为

如果 R2 > R1,则α > 0,将 R 称为正温度系数电阻,即电阻值随着温度的升高而增大;

如果 R2< R1,则α < 0,将 R 称为负温度系数电阻,即电阻值随着温度的升高而减小。

显然 α 的绝对值越大,表明电阻受温度的影响也越大。

线性电阻

定义

任何一个二端元件,若选取元件电压 U 与电流 I 方向关联,即方向一致, 如图 1-12 所示,在任意时刻的电压和电流之间存在代数关系,即不论电压和电流的波形如 何,电阻元件的伏安关系服从欧姆定律

式中,G = 1/R,电阻 R 的倒数 G 叫作电导,其国际单位为西门子(S),则此二端元件称为电阻元件,单位为欧姆(Ω)。

伏安特性曲线

线性电阻元件的伏安特性曲线是一、三象限的一条过原点的直线,如图 1-13 所示。

短路和开路

短路:短路(U=0)可看成电阻为零的电阻元件,其特性曲线与 I 轴重合。

开路:开路(I=0)可看成电阻为无穷大的电阻元件,其特性曲线与 U 轴重合 。

功率

对于任意线性电阻,若选取元件或电路部分的电压 u 与电流 i 方向关联,即方向一致,因为 R=u(t)/ i(t) ,因此 p(t) = u(t)i(t) >0,也就是说,这种电阻元件始终吸收功率,为耗能元件

电阻(或其他的电路元件)上吸收的能量与时间区间相关。设从 t0到 t 时间区间内电阻 R 吸收的能量为 w(t),则该能量应等于从 t0到 t 对电阻吸收的功率 p(t)做积分,即

(自己尝试下进行公式推导,便于理解)

结论:无论电流、电压如何变化,电阻上的功率 P 总是大于零,说明电阻总是在消耗功率,电阻是耗能元件。

电容元件

电容器

结构

两个彼此靠近又相互绝缘的导体就构成了一个电容器,这对导体叫电容器的两个极板。

种类

电容器按其电容量是否可变,可分为固定电容器和可变电容器,可变电容器还包括半可变电容器。固定电容器的电容量是固定不变的,它的性能和用途与两极板间的介质有关。一般常用的介质有云母、陶瓷、金属氧化膜、纸介质、铝电解质等。

电解电容器是有正负极之分的,使用时不可将极性接反或接到交流电路中,否则会将电解电容器击穿

电容量在一定范围内可调的电容器叫可变电容器。半可变电容器又叫微调电容器。

作用

电容器是储存和容纳电荷的装置,也是储存电场能量的装置。电容器每个极板上所储存的电荷的量叫电容器的电量。

将电容器两极板分别接到电源的正负极上,使电容器两极板分别带上等量异号电荷, 这个过程叫电容器的充电过程。

电容器充电后,极板间有电场和电压。

用一根导线将电容器两极板相连,两极板上正负电荷中和,电容器失去电量,这个过 程称为电容器的放电过程。

平行板电容器

由两块相互平行、靠得很近、彼此绝缘的金属板所组成的电容器 叫平行板电容器。平行板电容器是一种最简单的电容器。

线性电容

定义

任何一个二端元件,如果在任意时刻的电压和电流之间的关系总可以由 q - u 平面上的一条过原点的曲线所决定,则此二端元件称为电容元件。数学定义式为

元件图形符号

元件图形符号如图 1-14 所示,图中电压与电流为关联参考方向。

线性电容的库伏特性曲线

线性电容元件的库伏特性曲线是一、三象限的一条过 原点的直线,如图 1-15 所示。

电容 C 表征元件储存电荷的能力,对于极板电容而言,其大小不随电路情况变化,取决于介电常数、极板相对的面积及极板间距。

线性电容的伏安特性

由于 i=dq/dt,而q=Cu ,所以电容的伏安(u- i)关系为微分关系,即i=C(du/dt) 。由此可见,电路中流过电容的电流的大小与其两端的电压的变化率成 正比,电压变化越快,电流越大。可以得出结论:电容元件隔直通交,通高阻低。

由此可见,电容元件某一时刻的电压不仅与该时刻流过电容的电流有关,还与初始时 刻的电压大小有关。可见,电容是一种电压“记忆”元件。

功率

对于任意线性的正值电容,若选取元件或电路部分的电压 u 与电流 i 方向关 联,即方向一致,则其功率为

那么从 t0 到t 时间内,电容元件吸收的电能为

则从 t1到 t2 时间内,电容元件吸收的电能为

(判定电容元件充放电公式)

也就是说,当 u2>u1时, w >0 ,电容吸收能量,为充电过程;当 u2<u1 时, w < 0, 电容放出能量,为放电过程。

说明以下几点

① 电容为储能元件,并不消耗电能。

② 电容为电压记忆元件,其电压与初始值有关。

③ 电容为动态元件,其电压、电流为积分关系。

④ 电容为电压惯性元件,即电流为有限值时,电压不能跃变。

⑤ 电容元件隔直通交,通高阻低。

电容器的连接包括串联和并联

① 电容器的串联

把几个电容器首尾相接连成一个无分支的电路,称为电容器的串 联,如图 1-16 所示。

串联时,每个极板上的电荷量都是 q。设每个电容器的电容分别为 C1、C2、C3,电压 分别为 U1、U2、U3,则

即串联电容器总电容的倒数等于各电容器电容的倒数之和。

② 电容器的并联

如图 1-17 所示,把几个电容器的一端连在一起,另一端也连在一 起的连接方式叫作电容器的并联。

电容器并联时,加在每个电容器上的电压都相等。设电容器的电容分别为 C1、C2、C3, 所带的电量分别为 q1、q2、q3,则

设并联电容器的总电容(等效电容)为 C,由 q = CU 得C=C1+C2+C3 ,即并联电容器的总电容等于各个电容器的电容之和。

电容器中的电场能量。

① 能量来源

电容器在充电过程中,两极板上有电荷积累,极板间形成电场。电场 具有能量,此能量是从电源吸取过来储存在电容器中的。

② 储能大小的计算

电容器充电时,极板上的电荷量 q 逐渐增加,两板间电压 uC也 在逐渐增加,电压与电荷量成正比,即 q = Cu,在电压、电流关联参考方向下,功率为

式中,电容 C 的单位为 F,电压 uC的单位为 V,电荷量 q 的单位为 C,能量的单位为 J。

电容器中储存的能量与电容器的电容成正比,与电容器两极板间电压的平方成正比。

电容器在电路中的作用

当电容器两端电压增加时,电容器从电源吸收能量并储 存起来;当电容器两端电压降低时,电容器便把它原来所储存的能量释放出来。即电容器 本身只与电源进行能量交换,而并不损耗能量,因此电容器是一种储能元件。

实际的电容器由于介质漏电及其他原因,也要消耗一些能量,使电容器发热,这种 量消耗称为电容器的损耗

电容器质量的判别

利用电容器的充放电作用,可用万用表的电阻挡来判别较大容量电容器的质量(此质量意为:品质度量,非物理中的质量)(怕大家不晓得电阻档,找了一张图片,大家也可以买一个万用表玩玩,毕竟后面要考实践,指不定要用的)

将万用表的表棒分别与电容器的两端接触,若指针偏转后又很快回到接近起始位置的地方,则说明电容器的质量很好,漏电很小;若指针回不到起始位置,停在标度盘某处,说明电容器漏电严重,这时指针所指的电阻数值即该电容的漏电阻值;若指针偏转到零欧位置后不再回去,说明电容器内部短路;若指针根本不偏转,则说明电容器内部可能断路。

电感元件

定义

任何一个二端元件,如果在任意时刻的电压和电流之间的关系总可以由自感磁通链-电 流(ψ - i)平面上的一条过原点的曲线所决定,则此二端元件称为电感元件。数学定义式为

式中,Ψ 为通过线圈的磁链,Ψ =NΦ,单位是韦伯(Wb);I 为通过线圈的电流,单位是安培(A);L 为比例常数,称为线圈的电感或自感系数,简称自感,体现电感线圈储存磁场的能力,单位是亨利(H)。

元件符号与图形

电感元件符号与图形如图 1-18 所示。

线性电感元件的韦安特性曲线

线性电感元件的韦安特性曲线是一、三象限的一条过原点的直线,如图 1-19 所示。

线性电感的伏安特性

由此可见,电感元件某一时刻流过的电流不仅与该时刻电感两端的电压有关,还与初始时刻的电流大小有关。可见,电感是一种电流“记忆”元件。

功率

对于任意线性的正值电感,若选取元件或电路部分的电压 u 与电流 i 方向关联,其功率为

说明

(1) 电感为储能元件,并不消耗电能。

(2) 电感为电流记忆元件,其电流与初始值有关。

(3) 电感为动态元件,其电流、电压为积分关系。

(4) 电感为电流惯性元件,即电压为有限值时,电流不能跃变。

(5) 电感元件通直隔交,通低阻高。(这里要与电容元件做个对比)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1287559.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于STM32驱动的压力传感器实时监测系统

本文介绍了如何使用STM32驱动压力传感器进行实时监测。首先&#xff0c;我们会介绍压力传感器的工作原理和常见类型。然后&#xff0c;我们将介绍如何选择合适的STM32单片机和压力传感器组合。接下来&#xff0c;我们会详细讲解如何使用STM32驱动压力传感器进行数据采集和实时监…

根文件系统软件运行测试

一. 简介 前面几篇文章学习了制作一个可以在开发板上运行的&#xff0c;简单的根文件系统。 本文在上一篇文章学习的基础上进行的&#xff0c;文章地址如下&#xff1a; 完善根文件系统-CSDN博客 本文对根文件系统软件运行进行测试。 我们使用 Linux 的目的就是运行我们自…

vue3 setup语法糖 多条件搜索(带时间范围)

目录 前言&#xff1a; setup介绍&#xff1a; setup用法&#xff1a; 介绍&#xff1a; 前言&#xff1a; 不管哪个后台管理中都会用到对条件搜索带有时间范围的也不少见接下来就跟着我步入vue的多条件搜索&#xff08;带时间范围&#xff09; 在 Vue 3 中&#xff0c;你…

[JavaScript前端开发及实例教程]计算器井字棋游戏的实现

计算器&#xff08;网页内实现效果&#xff09; HTML部分 <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>My Calculator&l…

Unity3D对CSV文件操作(创建、读取、写入、修改)

系列文章目录 Unity工具 文章目录 系列文章目录前言一、Csv是什么&#xff1f;二、创建csv文件2-1、构建表数据2-2、创建表方法2-3、完整的脚本&#xff08;第一种方式&#xff09;2-4、运行结果2-5、完整的脚本&#xff08;第二种方式&#xff09;2-6、运行结果2-7、想用哪种…

基于STM32 HAL库的光电传感器驱动程序实例

本文将使用STM32 HAL库编写一个光电传感器的驱动程序示例。首先&#xff0c;我们会介绍光电传感器的工作原理和应用场景。然后&#xff0c;我们将讲解如何选择合适的STM32芯片和光电传感器组合。接下来&#xff0c;我们会详细介绍使用STM32 HAL库编写光电传感器驱动程序的基本步…

AVFormatContext封装层:理论与实战

文章目录 前言一、封装格式简介1、FFmpeg 中的封装格式2、查看 FFmpeg 支持的封装格式 二、API 介绍三、 实战 1&#xff1a;解封装1、原理讲解2、示例源码 13、运行结果 14、示例源码 25、运行结果 2 三、 实战 2&#xff1a;转封装1、原理讲解2、示例源码3、运行结果 前言 A…

Docker中部署ElasticSearch 和Kibana,用脚本实现对数据库资源的未授权访问

图未保存&#xff0c;不过文章当中的某一步骤可能会帮助到您&#xff0c;那么&#xff1a;感恩&#xff01; 1、docker中拉取镜像 #拉取镜像 docker pull elasticsearch:7.7.0#启动镜像 docker run --name elasticsearch -d -e ES_JAVA_OPTS"-Xms512m -Xmx512m" -e…

删除误提交的 git commit

背景描述 某次的意外 commit 中误将密码写到代码中并且 push 到了 remote repo 里面, 本文将围绕这个场景讨论如何弥补. 模拟误提交操作 在 Gitee 创建一个新的 Repo, clone 到本地 git clone https://gitee.com/lpwm/myrepo.git创建两个文件, commit 后 push 到 remote 作…

JSON 语法详解:轻松掌握数据结构(下)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

CSS中 设置文字下划线 的几种方法

在网页设计和开发中&#xff0c;我们经常需要对文字进行样式设置&#xff0c;包括字体,颜色&#xff0c;大小等&#xff0c;其中&#xff0c;设置文字下划线是一种常见需求 一 、CSS种使用 text-decoration 属性来设置文字的装饰效果&#xff0c;包括下划线。 常用的取值&…

JFrog----基于Docker方式部署JFrog

文章目录 1 下载镜像2 创建数据挂载目录3 启动 JFrog服务4 浏览器登录5 重置密码6 设置 license7 设置 Base URL8 设置代理9 选择仓库类型10 预览11 查看结果 1 下载镜像 免费版 docker pull docker.bintray.io/jfrog/artifactory-oss体验版&#xff1a; docker pull releas…

【网络奇缘】- 如何自己动手做一个五类|以太网|RJ45|网络电缆

​ ​ &#x1f308;个人主页: Aileen_0v0&#x1f525;系列专栏: 一见倾心,再见倾城 --- 计算机网络~&#x1f4ab;个人格言:"没有罗马,那就自己创造罗马~" 本篇文章关于计算机网络的动手小实验---如何自己动手做一个网线&#xff0c; 也是为后面的物理层学习进…

在cmd下查看当前python的版本

在cmd窗口下运行python --version或者py --version&#xff0c;可以查看当前python的版本。例如&#xff1a;

OpenAI在中国,申请GPT-6、GPT-7商标

根据最新商标信息显示&#xff0c;OpenAI已经在中国提交了GPT-6和GPT-7的商标注册信息&#xff0c;分类是科学仪器和网站服务两大类。申请日期是今年的11月2日&#xff0c;目前处于审核状态。 该申请由知识产权代理公司完成&#xff0c;但申请人的地址正是OpenAI在美国公司的地…

LeetCode437.路径总和III

看完题目我就拿直接用递归写了如下代码&#xff1a; class Solution {private int ans;public int pathSum(TreeNode root, int targetSum) {ans 0;dfs(root, targetSum, 0);return ans;}public void dfs(TreeNode root, int targetSum, int sum){if(root null)return;sum r…

【MATLAB】辛几何模态分解分解+FFT+HHT组合算法

有意向获取代码&#xff0c;请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 辛几何模态分解&#xff08;CEEMDAN&#xff09;是一种处理非线性和非平稳信号的适应性信号分解方法。通过在信号中加入白噪声&#xff0c;并多次进行经验模态分解&#xff08;EMD&#…

CSS BFC特性和应用

目录 1&#xff0c;介绍2&#xff0c;BFC布局规则3&#xff0c;创建BFC4&#xff0c;BFC应用1&#xff0c;浮动子元素使父级高度坍塌2&#xff0c;非浮动元素被浮动元素覆盖3&#xff0c;margin 合并1&#xff0c;父子 margin 合并&#xff1a;父级和第1个/最后1个子元素2&…

【matlab程序】matlab画子图的多种样式

【matlab程序】matlab画子图的多种样式

Ps:文字操作常用快捷键

对文字的设置操作&#xff0c;可在工具选项栏或“字符”面板上进行。但是&#xff0c;如果能记住并使用快捷键&#xff0c;可大大提高工作效率。 设置文字颜色 Color 1、选中几个或全部文字后&#xff0c;除了使用工具选项栏上的“颜色”按钮&#xff0c;还可以使用快捷键 Alt…