python自动化测试之破解滑动验证码

news2024/11/27 21:01:54

在Web自动化测试的过程中,经常会被登录的验证码给卡住,不知道如何去通过验证码的验证。
一般的情况下遇到验证码我们可以都可以找开发去帮忙解决,关闭验证码,或者给一个万能的验证码!
那么如果开发不提供帮助的话,我们自己有没有办法来处理这些验证码的问题呢?
答案当然是有的,常见的验证码一般分为两类,一类是图文验证码,一类是滑动验证码!

滑动验证破解思路

关于滑动验证码破解的思路大体上来讲就是以下两个步骤:

  • 1、获取滑块滑动的距离
  • 2、模拟拖动滑块,通过验证。

关于这种滑动的验证码,滑块和缺口背景都是分别是一张独立的图片,我们可以把这两张图片,

下载下来借助于图像识别的技术,去识别缺口在背景图中的位置,然后减去滑块当前所在位置,就可以得出需要滑动的距离。

案例讲解

话不多说,我们先来看一个案例(QQ 空间登录),QQ 空间登录案例实现步骤如下:

  • 1、创建一个driver对象,访问qq登录页面
  • 2、输入账号密码
  • 3、点击登录
  • 4、模拟滑动验证 

实现代码

import time
from selenium import webdriver
from slideVerfication import SlideVerificationCode
  
# 1、创建一个driver对象,访问qq登录页面
browser = webdriver.Chrome()
browser.get("https://qzone.qq.com/")
  
# 2、输入账号密码
# 2.0 点击切换到登录的iframe
browser.switch_to.frame('login_frame')
# 2.1 点击账号密码登录
browser.find_element_by_id('switcher_plogin').click()
# 2.2定位账号输入框,输入账号
browser.find_element_by_id("u").send_keys("123456")
# 2.3定位密码输入输入密码
browser.find_element_by_id("p").send_keys("PYTHON")
# 3、点击登录
browser.find_element_by_id('login_button').click()
time.sleep(3)
  
# 4、模拟滑动验证
# 4.1切换到滑动验证码的iframe中
tcaptcha = browser.find_element_by_id("tcaptcha_iframe")
browser.switch_to.frame(tcaptcha)
# 4.2 获取滑动相关的元素
# 选择拖动滑块的节点
slide_element = browser.find_element_by_id('tcaptcha_drag_thumb')
# 获取滑块图片的节点
slideBlock_ele = browser.find_element_by_id('slideBlock')
# 获取缺口背景图片节点
slideBg = browser.find_element_by_id('slideBg')
# 4.3计算滑动距离
sc = SlideVerificationCode(save_image=True)
distance = sc.get_element_slide_distance(slideBlock_ele,slideBg)
# 滑动距离误差校正,滑动距离*图片在网页上显示的缩放比-滑块相对的初始位置
distance = distance*(280/680) - 22
print("校正后的滑动距离",distance)
# 4.4、进行滑动
sc.slide_verification(browser,slide_element,distance=100)

其实关于这个模块图像识别,是借助了第三方的图像处理模块来进行识别的,python 中有很多现成的用来处理图片的库,本文使用的是 opencv-python 来进行识别的。slideVerfication 模块上面用到的两个方法的部分参考代码如下:

根据传入滑块,和背景的节点,计算滑块的距离

def get_element_slide_distance(self, slider_ele, background_ele, correct=0):
    """
    根据传入滑块,和背景的节点,计算滑块的距离
  
    该方法只能计算 滑块和背景图都是一张完整图片的场景,
    如果背景图是通过多张小图拼接起来的背景图,
    该方法不适用,请使用get_image_slide_distance这个方法
    :param slider_ele: 滑块图片的节点
    :type slider_ele: WebElement
    :param background_ele: 背景图的节点
    :type background_ele:WebElement
    :param correct:滑块缺口截图的修正值,默认为0,调试截图是否正确的情况下才会用
    :type: int
    :return: 背景图缺口位置的X轴坐标位置(缺口图片左边界位置)
    """
    # 获取验证码的图片
    slider_url = slider_ele.get_attribute("src")
    background_url = background_ele.get_attribute("src")
    # 下载验证码背景图,滑动图片
    slider = "slider.jpg"
    background = "background.jpg"
    self.onload_save_img(slider_url, slider)
    self.onload_save_img(background_url, background)
    # 读取进行色度图片,转换为numpy中的数组类型数据,
    slider_pic = cv2.imread(slider, 0)
    background_pic = cv2.imread(background, 0)
    # 获取缺口图数组的形状 -->缺口图的宽和高
    width, height = slider_pic.shape[::-1]
    # 将处理之后的图片另存
    slider01 = "slider01.jpg"
    background_01 = "background01.jpg"
    cv2.imwrite(background_01, background_pic)
    cv2.imwrite(slider01, slider_pic)
    # 读取另存的滑块图
    slider_pic = cv2.imread(slider01)
    # 进行色彩转换
    slider_pic = cv2.cvtColor(slider_pic, cv2.COLOR_BGR2GRAY)
    # 获取色差的绝对值
    slider_pic = abs(255 - slider_pic)
    # 保存图片
    cv2.imwrite(slider01, slider_pic)
    # 读取滑块
    slider_pic = cv2.imread(slider01)
    # 读取背景图
    background_pic = cv2.imread(background_01)
    # 比较两张图的重叠区域
    result = cv2.matchTemplate(slider_pic, background_pic, cv2.TM_CCOEFF_NORMED)
    # 获取图片的缺口位置
    top, left = np.unravel_index(result.argmax(), result.shape)
    # 背景图中的图片缺口坐标位置
    print("当前滑块的缺口位置:", (left, top, left + width, top + height))
    return left

 滑动滑块进行验证

def slide_verification(self, driver, slide_element, distance):
    """
    滑动滑块进行验证
    
    :param driver: driver对象
    :type driver:webdriver.Chrome
    :param slide_element: 滑块的元组
    :type slider_ele: WebElement
    :param distance:  滑动的距离
    :type: int
    :return:
    """
    # 获取滑动前页面的url地址
    start_url = driver.current_url
    print("需要滑动的距离为:", distance)
    # 根据滑动距离生成滑动轨迹
    locus = self.get_slide_locus(distance)
    print("生成的滑动轨迹为:{},轨迹的距离之和为{}".format(locus, distance))
    # 按下鼠标左键
    ActionChains(driver).click_and_hold(slide_element).perform()
    time.sleep(0.5)
    # 遍历轨迹进行滑动
    for loc in locus:
        time.sleep(0.01)
        ActionChains(driver).move_by_offset(loc, random.randint(-5, 5)).perform()
        ActionChains(driver).context_click(slide_element)
    # 释放鼠标
    ActionChains(driver).release(on_element=slide_element).perform()
​现在我也找了很多测试的朋友,做了一个分享技术的交流群,共享了很多我们收集的技术文档和视频教程。
如果你不想再体验自学时找不到资源,没人解答问题,坚持几天便放弃的感受
可以加入我们一起交流。而且还有很多在自动化,性能,安全,测试开发等等方面有一定建树的技术大牛
分享他们的经验,还会分享很多直播讲座和技术沙龙
可以免费学习!划重点!开源的!!!
qq群号:485187702【暗号:csdn11】

最后感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走! 希望能帮助到你!【100%无套路免费领取】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1286800.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

金蝶云星空单据编辑界面,不允许批量填充操作

文章目录 金蝶云星空单据编辑界面,不允许批量填充操作案例演示开发设计测试 金蝶云星空单据编辑界面,不允许批量填充操作 案例演示 售后单,明细信息单据体,物料编码字段禁止批量填充。 开发设计 编写表单插件,在Be…

【C++】POCO学习总结(九):网络

【C】郭老二博文之:C目录 1、Poco::Net::IPAddress IP地址 Poco::Net::IPAddress类存储IPv4或IPv6主机地址。 Poco::Net::IPAddress可以从字符串解析,也可以格式化为字符串。支持IPv4格式(d.d.d.d)和IPv6格式(x: x: x: x: x: x: x: x)。 常用函数&…

行业内卷严重到什么程度了?

一.内卷现状 最近大家都吐槽找工作难,确实很难。 不得不说,现在找工作的难度是以前的很多倍。甚至可以说地狱级都不为过。 以前只要简历一挂到网上,就有很多电话打过来。特别是在一线城市,各种类型企业的HR都来找,希…

《opencv实用探索·十》opencv双边滤波的简单理解

1、引言 OpenCV中的双边滤波(Bilateral Filtering)是一种保持边缘清晰的滤波方法,它考虑像素的空间关系和像素值之间的差异。双边滤波对于去除噪声的同时保持图像的边缘非常有效,它也是一种非线性滤波。 双边滤波采用了两个高斯滤…

获取网络ppt资源

背景: ​ 某度上有很多优质的PPT资源和文档资源,但是大多数需要付费才能获取。对于一些经济有限的用户来说,这无疑是个遗憾,因为我们更倾向于以免费的方式获取所需资源。 解决方案: ​ 然而,幸运的是&am…

vivado如何进行增量编译

情况1 如果是根据 placement 或者 routing 进行增量编译,直接右键点击要跑的 implement,,选择set incremental implement , 然后选第二项,指定 要参考的 routing.dcp 或者 placement.dcp 的路径即可 情况2 如果只参考 synthesis …

西工大计算机学院计算机系统基础实验一(环境配置)

首先,不要焦虑,稳住心态慢慢来,一点一点做,跟着作者把基础打好,比什么都重要。作者曾经经历过这份痛苦,知道它有多么不好受。当初的作者高中之前甚至都没有自己的一台笔记本,上了大学以后学C语言…

设计模式:装饰者模式

目录 一、定义 二、场景 三、例子 四、优缺点 优点: 缺点: 一、定义 在不改变已有对象结构的情况下,动态添加新的功能到对象上,是继承的一种替代方案。属于结构型模式。 二、场景 1.扩展一个类的功能,添加附加职责…

Python如何传递任意数量的实参及什么是返回值

Python如何传递任意数量的实参 传递任意数量的实参 形参前加一个 * ,Python会创建一个已形参为名的空元组,将所有收到的值都放到这个元组中: def make_pizza(*toppings):print("\nMaking a pizza with the following toppings: "…

【部署】预处理和后处理加速方案:CVCuda

预处理 和 后处理加速方案大概可以包括以下几种 (1)nvidia开源的CVCuda (2)使用opencv4的cuda加速模块 (3)手写cuda算子 这一章我们先从CVCuda开始 一.基本要求 1.1 何时可以使用CVcuda库 在模型的 预…

SpringBoot_02

Web后端开发_07 SpringBoot_02 SpringBoot原理 1.配置优先级 1.1配置 SpringBoot中支持三种格式的配置文件: application.propertiesapplication.ymlapplication.yaml properties、yaml、yml三种配置文件,优先级最高的是properties 配置文件优先级…

【前端开发】每一位高级Web工程师都应该掌握的10个Web API!

Photo by Hisu lee on Unsplash JavaScript中的某些API的使用率可能相对较低。下面我们将逐一介绍它们的使用和使用场景。 Blob API Blob API用于处理二进制数据,可以轻松地将数据转换为Blob对象或从Blob对象读取数据。 // Create a Blob object const myBlob …

【Vulnhub 靶场】【hacksudo: FOG】【简单 - 中等】【20210514】

1、环境介绍 靶场介绍:https://www.vulnhub.com/entry/hacksudo-fog,697/ 靶场下载:https://download.vulnhub.com/hacksudo/hacksudo-FOG.zip 靶场难度:简单 - 中等 发布日期:2021年05月14日 文件大小:1.3 GB 靶场作…

Centos7 制作Openssh9.5 RPM包

Centos7 制作Openssh9.5 RPM包 最近都在升级Openssh版本到9.3.在博客里也放了openssh 9.5的rpm包. 详见:https://blog.csdn.net/qq_29974229/article/details/133878576 但还是有小伙伴不停追问这个rpm包是怎么做的,怕下载别人的rpm包里被加了盐. 于是做了个关于怎么用官方的o…

15.(vue3.x+vite)组件间通信方式之默认插槽(匿名插槽)

前端技术社区总目录(订阅之前请先查看该博客) 示例效果 默认插槽(匿名插槽) 插槽 slot 通常用于两个父子组件之间,最常见的应用就是我们使用一些 UI 组件库中的弹窗组件时,弹窗组件的内容是可以让我们自定义的,这就是使用了插槽的原理。 (1)slot 是 Vue中的内置标签…

vmware ubuntu22 访问github

1.虚拟机选NAT模式。 2.firefox找到下图setting。 3.选第四个,填主机ip和局域网代理的端口号。 4. 此时你应该能访问github了。

JAVA 线程池,及7大参数,4大拒绝策略详解

为什么要使用线程池 线程的生命周期:运行、就绪、运行、阻塞、死亡 下面是一个简单的创建多线程的方法。注意:工作中不可取。 创建线程的时候,我们避不开线程的生命周期。上面的方法虽然可以创建多线程,但是创建完成后&#xff0c…

设计一个简易版本的分布式任务调度系统

👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家📕系列专栏:Spring源码、JUC源码、Kafka原理、分布式技术原理🔥如果感觉博主的文章还不错的话&#xff…

【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】

【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】 文章目录 【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】1.推导2. CodeReference 结果先放在前面 1.推导 在学习PEARL算法的时候,encoder的设计涉及到了…

读书笔记-《数据结构与算法》-摘要3[选择排序]

选择排序 核心:不断地选择剩余元素中的最小者。 找到数组中最小元素并将其和数组第一个元素交换位置。在剩下的元素中找到最小元素并将其与数组第二个元素交换,直至整个数组排序。 性质: 比较次数(N-1)(N-2)(N-3)…21~N^2/2交换次数N运行…