MVSNeRF:多视图立体视觉的快速推广辐射场重建

news2024/11/15 20:31:38

MVSNeRF:多视图立体视觉的快速推广辐射场重建

    • 摘要
    • 1 引言

摘要

在2021年,作者提出了MVSNeRF,一种新的神经渲染方法,在视图合成中可以有效地重建神经辐射场。与之前对神经辐射场的研究不同,我们考虑了对密集捕获的图像进行每场景优化,我们提出了一种通用的深度神经网络,它可以通过快速网络推理,仅从附近的三个输入视图中重建辐射场。我们的方法利用平面扫描代价体(广泛应用于多视图立体视觉)进行几何感知场景推理,并将其与基于物理的体积渲染相结合,用于神经辐射场重建。我们在DTU数据集中的真实物体上训练我们的网络,并在三个不同的数据集上进行测试,以评估其有效性和通用性。我们的方法可以泛化跨场景(甚至是室内场景,完全不同于我们物体的训练场景),并仅使用三个输入图像生成真实的视图合成结果,显著优于同时发布的可推广的辐射场重建论文。此外,如果捕获密集的图像,我们估计的辐射场表示可以很容易地进行微调;这导致每个场景可以快速的重建,具有更高的渲染质量和更少的优化时间。

1 引言

新视角合成是计算机视觉和图形学中一个长期存在的问题。近年来,神经渲染方法显著地推进了这一领域的进展。神经辐射场( Neural Radiance Fields,NeRF)及其后续的工作已经可以产生逼真的新视图合成结果。然而,这些先前工作的一个显著缺点是它们需要一个很长的每一个场景的优化过程来获得高质量的辐射场,这相当昂贵并高度限制了实用性。

我们的目标是让神经场景重建和渲染更加实用。我们提出了MVSNeRF,一种新的方法,可以很好地推广到仅从几个(只有三个)非结构化的多视图输入图像中跨场景重建一个辐射场的任务。由于具有很强的通用性,我们避免了繁琐的每个场景优化,并可以通过快速的网络推理直接在新的视角上回归真实的图像。如果在短时间内(5-15 min)进一步优化更多图像,我们重建的辐射场甚至可以在数小时的优化下优于NeRFs(见图1)。
在这里插入图片描述
我们利用了最近在基于学习的多视点立体视觉(MVS)上的成功。对于三维重建任务,这项工作可以通过对代价体使用用三维卷积来训练可推广的神经网络。我们通过将附近的输入视图(由2DCNN推断)的二维图像特征变换到参考视图的结果中的扫描平面上,在输入参考视图上构建一个代价体。与其它MVS方法只对代价体进行深度推断不同,我们的网络对场景几何和外观进行推理,并输出一个神经辐射场(见图2),从而实现视图合成
在这里插入图片描述
具体来说,利用3D CNN,我们重建(从代价体)一个神经场景编码体,该体积由每个体素的神经特征组成,编码关于局部场景几何和外观的信息。然后,我们利用多层感知器(MLP),利用编码体内的三次插值神经特征,解码任意连续位置的体积密度和辐射。本质上,编码体是辐射场的局部神经表示;一旦估计,这个体积可以直接使用(去掉3D CNN),通过可微分射线行进行最终渲染。我们的方法结合了基于学习的MVS和神经渲染。与现有的MVS方法相比,我们实现了可微神经渲染,允许在不需要三维监督的情况下进行训练和推理时间优化,以进一步提高质量。与现有的神经渲染工作相比,我们的MVS架构可以很自然地推理相应的交叉视图,促进泛化到不可见的测试场景,也可以导致更好的神经场景重建和渲染。因此,我们的方法可以显著优于最近的发布的可推广的NeRF工作,它主要考虑二维图像特征,而没有显式的几何感知的三维结构(见表1和图4)。
在这里插入图片描述
在这里插入图片描述
我们证明,仅使用3张输入图像,我们从DTU数据集训练出来的网络在测试DTU场景时合成逼真的图像,甚至可以在其它分布不同的场景数据集上产生合理的结果。此外,我们估计的三图像辐射场(神经编码体)可以更容易地在新的测试场景上进一步优化,以改进更多被拍摄图像的神经重建,获得了逼真的结果,甚至与每个场景的过拟合NeRF相当,我们的优化时间比NeRF少(见图1)。这些实验表明,当只有少数图像捕获时,我们的技术可以作为一个强有力的重建器,可以重建一个辐射场用于真实的视图合成。或者作为一个强初始化器,当获得密集图像时,可以显著促进每个场景的辐射场优化。我们的方法向现实的神经渲染实际化迈出了重要的一步。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1284876.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【模电】放大电路的组成原则

放大电路的组成原则 组成原则常用的两种共射放大电路 组成原则 通过对基本共射放大电路的简单分析可以总结出,在组成放大电路时必须遵循以下几个原则:    1. 必须根据所用放大管的类型提供直流电源,以便设置合适的静态工作点,并…

2024 年甘肃省职业院校技能大赛中职组 电子与信息类“网络安全”赛项竞赛样题-B

2024 年甘肃省职业院校技能大赛中职组 电子与信息类“网络安全”赛项竞赛样题-B 目录 2024 年甘肃省职业院校技能大赛中职组 电子与信息类“网络安全”赛项竞赛样题-B 需要环境或者解析可以私信 (二)A 模块基础设施设置/安全加固(200 分&…

EI级 | Matlab实现TCN-GRU-Multihead-Attention多头注意力机制多变量时间序列预测

EI级 | Matlab实现TCN-GRU-Multihead-Attention多头注意力机制多变量时间序列预测 目录 EI级 | Matlab实现TCN-GRU-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.【EI级】Matlab实现TCN-GRU-Multihead-Attention…

探索 SSO 的世界:简化登录流程的最佳实践(上)

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

深度学习项目基于Tensorflow卷积神经网络人脸年龄预测系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 系统介绍 基于Tensorflow的卷积神经网络人脸年龄预测系统是一种先进的深度学习应用,能够通过对大量人脸…

『亚马逊云科技产品测评』活动征文|基于亚马逊EC2云服务器安装Prometheus数据可视化监控

授权声明:本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在 Developer Centre, 知乎,自媒体平台,第三方开发者媒体等亚马逊云科技官方渠道 亚马逊EC2云服务器(Elastic Compute Cloud)是亚马…

思维模型 路径依赖定律

本系列文章 主要是 分享 思维模型,涉及各个领域,重在提升认知。难以摆脱的惯性。 1 路径依赖定律的应用 1.1 打破路径依赖定律的苹果 在 20 世纪 80 年代,苹果公司推出了 Macintosh 电脑,这是一款具有图形用户界面和鼠标的创新产…

在intelliJ spring boot gradle插件3.2.0中未找到匹配的变量

我正在尝试使用spring启动Gradle插件的版本3.2.0。这是我的build.gradle文件: plugins {id javaid org.springframework.boot version 3.2.0id io.spring.dependency-management version 1.1.4 }group com.yaxin version 0.0.1-SNAPSHOTjava {sourceCompatibilit…

【unity3D】创建游戏物体的三种方式

💗 未来的游戏开发程序媛,现在的努力学习菜鸡 💦本专栏是我关于游戏开发的学习笔记 🈶本篇是在unity中创建游戏物体的三种方式 unity中创建游戏物体 使用构造函数创建一个空的游戏对象根据现有的预制体资源或者场景中已有的物体进…

三大兼容 | 人大金仓兼容+优化MySQL用户变量特性

目前,KingbaseES对MySQL的兼容性,已从功能兼容阶段过渡到强性能兼容、生态全面兼容阶段,针对客户常常遇到的用户变量问题,KingbaseES在兼容MySQL用户变量功能的基础上,优化了MySQL用户变量的一些原生问题,使…

.Net6支持的操作系统版本(.net8已来,你还在用.netframework4.5吗)

机缘 不知不觉,.NET8都已经面世,而我们一直还停留在.netframework4.5开发阶段,最近准备抽空研究一下.Net6,一是为了提高技术积累,一方面想着通过这次的学习,看有没有可能将老的FX版本替换到.Net6开发上,经过查找官方资料,对.Net6支持的系统版本做一个分享,方便大家后期…

python-ATM机

编写程序,实现一个具有开户、查询、取款、存款、转账、锁定、解锁、退出功能的银行管理系统。 结果展示 1.Main主方法 from zzjmxy.class7.atm import ATM from zzjmxy.class7.manager import Manager # 主面板,实现主要逻辑if __name__"__main__…

你的AI生成物侵权了吗?

你的AI生成物侵权了吗? 本文目录: 一、前置背景 1.1、什么是版权 1.2、什么是作品 1.3、什么是创作 1.4、什么是肖像权 1.5、什么是名誉 二、AI生成的作品是否具备版权?如果具备,版权应该属于谁? 三、AI 学习时…

Hadoop进阶学习---Yarn资源调度架构

1.Yarn执行MR流程 1.客户端提交一个MR程序给ResourceManager(校验请求是否合法…) 2.如果请求合法,ResourceManager随机选择一个NodeManager用于生成appmaster(应用程序控制者,每个应用程序都单独有一个appmaster) 3.appmaster会主动向ResourceManager的应用管理器(applicatio…

启动 AWS Academy Learner Lab【教学】(Hadoop实验)

🔥博客主页: A_SHOWY🎥系列专栏:力扣刷题总结录 数据结构 云计算 第一部分 创建实例过程 首先,需要创建3台EC2,一台作主节点 (master node),两台作从节点 (slaves node)。 1.镜像选择 EC2&…

金蝶云星空表单插件单据体批量删除,序号自增

文章目录 金蝶云星空表单插件单据体批量删除,序号自增字段标识说明表单插件获取单据体数据包移除物料为空的行其他移除物料为空的行的方式,但是测试不通过,不建议使用序号重新生成测试 金蝶云星空表单插件单据体批量删除,序号自增…

Hadoop进阶学习---HDFS分布式文件存储系统

1.hdfs分布式文件存储的特点 分布式存储:一次写入,多次读取 HDFS文件系统可存储超大文件,时效性较差. HDFS基友硬件故障检测和自动快速恢复功能. HDFS为数据存储提供很强的扩展能力. HDFS存储一般为一次写入,多次读取,只支持追加写入,不支持随机修改. HDFS可以在普通廉价的机器…

【新手解答8】深入探索 C 语言:递归与循环的应用

C语言的相关问题解答 写在最前面问题:探索递归与循环在C语言中的应用解析现有代码分析整合循环示例代码修改注意事项结论 延伸:递归和循环的退出条件设置解析使用递归使用循环选择适合的方法 写在最前面 一位粉丝私信交流,回想起了当初的我C…

葡萄酒的储存条件会影响葡萄酒的陈酿吗?

自20世纪末以来,葡萄酒储存有关的行业一直在增长,一些葡萄酒鉴赏家可能会选择将葡萄酒存放在家里的专用房间或壁橱里。 自云仓酒庄品牌雷盛红酒分享总所周知,瓶装葡萄酒的储存条件是会影响葡萄酒的陈酿,振动和热波动会加速葡萄酒的…

室内外融合便携式定位终端5G+UWB+RTK

一、介绍 便携式定位终端主要用于提供高精度的位置数据,支持室内UWB定位和室外北斗系统定位功能,支持5G公网和5G专网通信功能,便携式定位终端中超宽带(UWB)和实时动态(RTK)技术的集成代表了精确位置跟踪方面的重大进步。这款UWBRTK便携式定位…