【OpenCV】计算机视觉图像处理基础知识

news2024/11/20 12:37:07

目录

前言

推荐

1、OpenCV礼帽操作和黑帽操作

2、Sobel算子理论基础及实际操作

3、Scharr算子简介及相关操作

4、Sobel算子和Scharr算子的比较

5、laplacian算子简介及相关操作

6、Canny边缘检测的原理

6.1 去噪

6.2 梯度运算

6.3 非极大值抑制

6.4 滞后阈值

7、Canny边缘检测的函数及使用


前言

本文将非常细致的讲解相关与计算机视觉OpenCV图像处理的相关知识即操作,非常的简单易懂。

推荐

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站

1、OpenCV礼帽操作和黑帽操作

图像顶帽操作也叫图像礼帽操作,实际上就是:
结果图像=原图像-图像开运算
那么我们知道图像的开运算就是对图像先腐蚀操作,然后在进行膨胀操作,得到的图像其实就是进行了取噪的一个处理,然后我们所说的礼帽图像操作就是使用原图像-图像的开运算操作。
函数依旧是:

result = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)

其中img表示原始图像,cv2.MORPH_TOPHAT表示进行礼帽操作,然后kernel表示卷积核,这里我们之前已经讲过。
核心函数是:

k=np.ones((5,5),np.uint8)
r=cv2.morphologyEx(o,cv2.MORPH_TOPHAT,k)

这样我们显示以下我们处理的图像就可以知道:

处理之后我们得到了相应的噪声结果。

图像黑帽操作就是图像的闭运算-原图像
黑帽结果图像=图像闭运算-原图像
我们之前也介绍过这个闭运算操作就是先对图像进行膨胀操作,然后进行腐蚀操作。
函数是:

result = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)

其中cv2.MORPH_BLACKHAT表示的就是黑帽操作的意思,kernel表示卷积核。
然后我们看一下图像处理的核心函数:

k=np.ones((5,5),np.uint8)
r=cv2.morphologyEx(o,cv2.MORPH_BLACKHAT,k)

得到的结果是:

可以看到我们把图像中的小气泡都取出来了。

2、Sobel算子理论基础及实际操作

首先我们来了解一个边界的定义,看一个图来理解更加的明白。

对于如图中的水平梯度,我们看A、B两个地方,右侧像素值减去左侧像素值不为0,那么我们就说在此图中A列和B列是边界,否则不是边界。同样对于垂直梯度我们也是这样定义。
对于Sobel算子,我们先来看x方向他进行了什么操作:

P5x=(p3-p1)+2*(p6-p4)+(p9-p7)
右侧像素值减去左侧像素值,中间行参数稍大为2。
同样对于y轴方向也做了一个同样的操作,
P5y=(p7-p1)+2*(p8-p2)+(p9-p3)
下一行像素值减去上一行像素值,中间列参数稍大为2
然后我们计算了一个近似梯度值:
G= 根号(𝐺𝑥2 + 𝐺𝑦2)
简化版本就是:
G=|𝐺𝑥|+| 𝐺𝑦|

这中心点的P5的Sobel算子就是按照这个方式进行计算。
对于P5点完成的Sobel算子计算就是这样:

那么好,我们来看一下在python中对于Sobel是一个什么样的函数:

dst = cv2.Sobel( src , ddepth , dx , dy , [ksize] )

其中src表示原始图像,ddeph表示图像的深度,那么我们一般设定为-1,用来表示和原图像保持一致。dx,dy表示x轴的方向或者y轴的方向,ksize表示核大小。
其中我们在已经知道的256色位图中,白色点像素值255,黑色点像素值0。
这里对于dx,dy方向为什么我们取绝对值进行一下解答,因为加入一块黑块在一个白色背景下,那么我们在水平方向上,左侧那么得到的数值就是一个负数,对于右侧那么我们得到的是就是一个正常的正数,那么对于OpenCV来说,当我们没有加绝对值得时候如果出现了负数,统一处理成0。
 

根据图我们就可以知道,左侧的线被OpenCV处理成了0。所以我们这里要加上一个绝对的运算。无论对于水平方向还是垂直方向都是如此。
然后我们要将原始图像处理成256为的色位图。其函数是:

dst = cv2.convertScaleAbs( src [, alpha[, beta]] )

目标图像=调整(原始图像*alpha+beta)
其中alpha和beta可以理解为权重的意思。
当我们想要计算水平方向上的Sobel算子的时候,那么我们就设定函数中的参数dx=1,dy=0.对于垂直方向也是如此。那么这里我们就会想:如果我们两个方向都一起设置这样是不是比计算完x的方向然后计算y方向,然后进行结合这样是不是更加的方便一些呢?也就是说下图中的方式一比方式二更加的简介方便呢?

事实上不是这样的,而且两个图像有很大的差异,这个我们后续会看到结果。
那么当我们完成了这一步操作之后,我们还要做两个图像的权重和,其函数是:

dst=cv2.addWeighted( src1 , alpha , src2 , beta , gamma )

这里我们说的通俗一点就是,src1表示计算的x轴方向的图像,alpha表示x轴方向上的图像所占的比重,src2表示计算的y轴方向的图像,beta表示y轴方向上的图像所占的比重是多少,最后gamma表示一个修正数值。

dst(I)=saturate(src1(I)*alpha+src2(I)*beta+gamma)

接下来我们来验证一下各个结果:

import cv2
import numpy as np
o = cv2.imread('image\\sobel4.bmp',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(o,-1,1,0)
cv2.imshow("original",o)
cv2.imshow("x",sobelx)
cv2.waitKey()
cv2.destroyAllWindows()

这里我们没有加上绝对值计算x轴方向上的Sobel算子,得到的结果是:

很明显左侧的没有计算出来。

import cv2
import numpy as np
o = cv2.imread('image\\sobel4.bmp',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(o,cv2.CV_64F,1,0)
sobelx = cv2.convertScaleAbs(sobelx) # 转回uint8 
cv2.imshow("original",o)
cv2.imshow("x",sobelx)
cv2.waitKey()
cv2.destroyAllWindows()

当我们加上绝对值后的结果是:

对于垂直方向的结果也是如此。最后我们计算出x,y的方向。进行融合并且和直接将x,y表示成1的结果进行一下对比,我们来看结果:
核心代码:

sobelx = cv2.Sobel(o,cv2.CV_64F,1,0)
sobely = cv2.Sobel(o,cv2.CV_64F,0,1)
sobelx = cv2.convertScaleAbs(sobelx) # 转回uint8 
sobely = cv2.convertScaleAbs(sobely) 
sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0) 
sobelxy11=cv2.Sobel(o,cv2.CV_64F,1,1)
sobelxy11=cv2.convertScaleAbs(sobelxy11)

根据结果我们可以得到:使用了dx,dy的情况下无法检测到边。然后我们用lena来测试一下结果。

在我们相加表示的情况下,边缘检测的线条十分清晰,将分割的地带表达的特别清楚。

3、Scharr算子简介及相关操作

经过大量的科学家验证,发现3*3的Sobel算子可能并不是特别的精确,于是又提出了相应的Scharr算子,其实就是改变了运算的尺度而已。

Sobel算子由原来的121变为了3 10 3,这样的一个组合。其余的操作都是和Sobel算子一致我们来简要的说明一下:
dst=Scharr(src, ddpeth, dx, dy)
这里面少了核的大小,但是和Sobel算子依然一直,参数这里就不解释了,唯一不同的就是我们使用Sobel算子可以设置成dx=1,dy=1。那么对于Scharr算子如果这样设置就会报错。这里需要注意一下。满足条件:
dx >= 0 && dy >= 0 && dx+dy == 1
 

import cv2
import numpy as np
o = cv2.imread('image\\scharr.bmp',cv2.IMREAD_GRAYSCALE)
scharrx = cv2.Scharr(o,cv2.CV_64F,1,0)
scharry = cv2.Scharr(o,cv2.CV_64F,0,1)
scharrx = cv2.convertScaleAbs(scharrx) # 转回uint8 
scharry = cv2.convertScaleAbs(scharry) 
scharrxy = cv2.addWeighted(scharrx,0.5,scharry,0.5,0) 
cv2.imshow("original",o)
cv2.imshow("x",scharrx)
cv2.imshow("y",scharry)
cv2.imshow("xy",scharrxy)
cv2.waitKey()
cv2.destroyAllWindows()

4、Sobel算子和Scharr算子的比较

对于上述我们的测试图,其实看不出来Sobel算子和Scharr算子到底有什么区别,看起来是一致的,那么我们这里使用大美女lena进行一次Sobel和Scharr,得到结果进行对比一下可以知道:

sobelx = cv2.Sobel(o,cv2.CV_64F,1,0,ksize=3)
sobely = cv2.Sobel(o,cv2.CV_64F,0,1,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx) # 转回uint8 
sobely = cv2.convertScaleAbs(sobely) 
sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0) 
scharrx = cv2.Scharr(o,cv2.CV_64F,1,0)
scharry = cv2.Scharr(o,cv2.CV_64F,0,1)
scharrx = cv2.convertScaleAbs(scharrx) # 转回uint8 
scharry = cv2.convertScaleAbs(scharry) 
scharrxy = cv2.addWeighted(scharrx,0.5,scharry,0.5,0)

很明显,这里我们看一下了lena的肩膀部分,可以看到使用Shcarr算子进行计算的时候,刻画的更加细致。

5、laplacian算子简介及相关操作

拉普拉斯算子类似于二阶sobel导数。实际上,在OpenCV中通过调用sobel算子来计算拉普拉斯算子。使用的公式为:
∆𝑠𝑟𝑐 = 𝜕2𝑠𝑟𝑐/𝜕𝑥2 + 𝜕2𝑠𝑟𝑐/𝜕𝑦2
使用的卷积核也和Sobel和Shcarr算子的不一致:

看起来有点像高斯的,哈哈哈。
这里我们进行一下讲解,
P5new=(p2+p4+p6+p8)-4*p5

当没有处于边界的时候呢,我们可以得到P5的数值是变化不大的,当处于边界的时候,P5的数值是变化非常大的,这是因为什么呢?

对于拉普拉斯算子的函数估计我们也可以猜到:
dst = cv2.Laplacian( src, ddepth )
自然是没有水平方向和垂直方向的。
实际操作中,计算梯度值可能会出现负数。通常处理的图像是np.uint8类型,如果结果也是该类型,所有负数会自动截断为0,发生信息丢失。所以,通常计算时,使用更高的数据类型cv2.CV_64F,取绝对值后,再转换为np.uint(cv2.CV_8U)类型。
所以我们还是要取一次绝对值的运算:
dst = cv2.convertScaleAbs( src )
 

import cv2
import numpy as np
o = cv2.imread('image\\laplacian.bmp',cv2.IMREAD_GRAYSCALE)
laplacian = cv2.Laplacian(o,cv2.CV_64F)
laplacian = cv2.convertScaleAbs(laplacian) # 转回uint8 
cv2.imshow("original",o)
cv2.imshow("laplacian",laplacian)
cv2.waitKey()
cv2.destroyAllWindows()

我们对lena进行一次拉普拉斯算子操作,得到的结果是:

6、Canny边缘检测的原理

Canny边缘检测算子是John F. Canny于 1986 年开发出来的一个多级边缘检测算法。更为重要的是 Canny 创立了边缘检测计算理论(Computational theory of edge detection)解释这项技术如何工作。
Canny 的目标是找到一个最优的边缘检测算法,最优边缘检测的含义是:
1.最优检测:算法能够尽可能多地标识出图像中的实际边缘,漏检真实边缘的概率和误检非边缘的概率都尽可能小;
2.最优定位准则:检测到的边缘点的位置距离实际边缘点的位置最近,或者是由于噪声影响引起检测出的边缘偏离物体的真实边缘的程度最小;
3.检测点与边缘点一一对应:算子检测的边缘点与实际边缘点应该是一一对应。
Canny边缘检测的一般步骤:1.去噪 2.梯度运算 3.非极大值抑制 4.滞后阈值。下面我们就分别讲解一下这些操作:

6.1 去噪

边缘检测容易受到噪声的影响。因此,在进行边缘检测前,通常需要先进行去噪。我们一般使用高斯滤波进行图像去噪处理。也就是让临近的像素具有更高的重要度。对周围像素计算加权平均值,较近的像素具有较大的权重值。

比较像我们之间讲到的k近邻算法的意思哈。进行去噪处理之后呢,我们对于平滑图像进行一次Sobel算子梯度运算。

6.2 梯度运算

𝐸𝑑𝑔𝑒𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝐺 = 根号下(𝐺𝑥2 + 𝐺𝑦2)
对于方向:𝐴𝑛𝑔𝑙𝑒 𝜃 = 𝑡𝑎𝑛−1(𝐺𝑦/𝐺𝑥)

对于每一个点计算之后的方向就是这样。大小和方向在图中都已经进行了标记。梯度的方向一般总是与边界垂直。梯度方向被归为四类:垂直,水平,和两个对角线。

6.3 非极大值抑制

在获得了梯度和方向后,遍历图像,去除所有不是边界的点。实现方法:逐个遍历像素点,判断当前像素点是否是周围像素点中具有相同方向梯度的最大值。

点A、点B、点C三点具有相同的方向,梯度方向垂直于边缘。判断点A是否为点A、点B、点C的局部最大值 :如果是,保留该点;否则,它被抑制(归零)。

这里就表示在垂直方向上进行了抑制,取出最大值。

6.4 滞后阈值

这里对非极大值抑制之后,我们进行了一次滞后阈值操作,分别取一个最小阈值和一个最大阈值,然后图像像素点的曲线与最大最小阈值相连则保留,如果不相连则抛弃。

我们来看一下边缘检测的结果图:

7、Canny边缘检测的函数及使用

Canny边缘检测的函数是:
edges = cv2.Canny( image, threshold1, threshold2 )
threshold1表示阈值1,threshold2表示阈值2。也就是我们刚刚介绍到的最大最小阈值。

import cv2
import numpy as np
o=cv2.imread("image\\canny.bmp",cv2.IMREAD_GRAYSCALE)
r=cv2.Canny(o,100,200)
cv2.imshow("original",o)
cv2.imshow("result",r)
cv2.waitKey()
cv2.destroyAllWindows()

然后我们在对lena做一次,结果是:

调整阈值,可以控制边缘细节。maxVal、minVal变小,有更多的细节信息。

如果觉得博主的文章还不错或者您用得到的话,可以免费的关注一下博主,如果三连收藏支持就更好啦!这就是给予我最大的支持!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1282683.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

dolphinscheduler安装与配置:使用脚本一键安装配置dolphinscheduler单机版(配置MySQL版本)

使用shell脚本一键安装配置dolphinscheduler 前言:使用此脚本可以帮助您自动下载安装配置dolphinscheduler单机版,包括设置MySQL保存元数据。自动下载、解压dolphinscheduler安装包,自动修改dolphinscheduler的配置,配置MySQL连接…

如何使用群晖管家结合内网穿透实现公网远程访问本地黑群晖

白嫖怪狂喜!黑群晖也能使用群晖管家啦! 文章目录 白嫖怪狂喜!黑群晖也能使用群晖管家啦!1.使用环境要求:2.下载安装群晖管家app3.随机地址登陆群晖管家app4.固定地址登陆群晖管家app 自己组装nas的白嫖怪们虽然也可以通…

打印菱形图案C语言

C代码实现&#xff1a; #include <stdio.h> void printDiamond(int n) { int i, j, space n - 1; // 打印上半部分包括中间行 for (i 0; i < n; i) { // 打印空格 for (j 0; j < space; j) printf(" "); // 打印星号 for (j 1; j < 2 *…

RTSP流媒体播放器

rtsp主要还是运用ffmpeg来搭建node后端转发到前端&#xff0c;前端再播放这样的思路。 这里讲的到是用两种方式&#xff0c;一种是ffmpeg设置成全局来实现&#xff0c;一种是ffmpeg放在本地目录用相对路径来引用的方式。 ffmpeg下载地址&#xff1a;http://www.ffmpeg.org/do…

嘉里大荣物流与极智嘉再度携手,合作助力物流服务高效升级

近日&#xff0c;全球仓储机器人引领者极智嘉(Geek)与3PL知名企业嘉里大荣物流联合宣布&#xff0c;双方再度携手&#xff0c;6周内共建全新自动化订单履行中心&#xff0c;赋能国际时尚运动品牌New Balance加速B2B和B2C订单交付&#xff0c;为其客户提供更高效便捷的物流服务。…

数据结构算法-插入排序算法

引言 玩纸牌 的时候。往往 需要将牌从乱序排列变成有序排列 这就是插入排序 插入排序算法思想 先看图 首先第一个元素 我默认已有序 那我们从第二个元素开始&#xff0c;依次插入到前面已有序的部分中。具体来说&#xff0c;我们将第二个元素与第一个元素比较&#xff0c;…

肺癌二期治疗效果与方案

肺腺癌II期治疗方案主要包括手术治疗、化疗、放疗等&#xff0c;建议患者积极配合医生治疗。 1、手术治疗 肺腺癌属于肺部恶性肿瘤&#xff0c;生长速度比较缓慢&#xff0c;早期患者可以通过手术的方式切除病变部位&#xff0c;能够达到根治目的&#xff0c;术后患者要注意伤…

kubeadm 安装k8s1.28.x 底层走containerd 容器

1. k8s1.28.x 的概述 1.1 k8s 1.28.x 更新 Kubernetes v1.28 是 2023 年的第二个大版本更新&#xff0c;包含了 46 项主要的更新。 而今年发布的第一个版本 v1.27 有近 60 项&#xff0c;所以可以看出来&#xff0c;在发布节奏调整后&#xff0c; 每个 Kubernetes 版本中都会包…

录视频人不在电脑旁,怎么设置定时关机

如果你平常工作比较忙&#xff0c;或者要录制的视频/音频文件需要很长时间&#xff0c;最好选择预约录制&#xff0c;这样可使录屏软件自动开始和停止录制&#xff0c;并且定时关机。此外&#xff0c;你还可以设置保存录制文件、关闭录屏软件。是不是听起来很感兴趣&#xff1f…

Qt内存泄漏工具vld使用

安装vld 下载并安装vld Github镜像站-GitHub - KindDragon/vld: Visual Leak Detector for Visual C 2008-2015 我安装在d盘的&#xff0c;如下图所示 拷贝文件 复制三个文件夹到工程目录的vld下 pro文件添加 win32: LIBS -L$$PWD/vld/lib/Win32/ -lvld INCLUDEPATH $$P…

等保测评报价相差很大,里面有什么门道

等保测评报价的差异主要源于以下几点&#xff1a; 服务质量评估标准不同&#xff1a;不同的测评机构在测评过程中所提供的服务范围、深度、细节等方面可能存在差异&#xff0c;因此导致报价有所不同。一些机构可能提供全面且细致的测评服务&#xff0c;致力于提供高质量的等保测…

软件测试真实项目案例【内附演示视频】

没有实战经验&#xff0c;简历不好编写&#xff0c;而且也不好就业。今天给大家分享一个非常适合练手的软件测试项目&#xff0c;此项目涵盖web端、app端、h5端、小程序端&#xff0c;可以说非常之全面。获取方式在文末。 项目介绍 项目名&#xff1a;XX商城 涉及端&#xf…

个人独立开发者能否踏上敏捷之路

很多软件开发团队都在使用Scrum、极限编程&#xff08;XP&#xff09;、看板等敏捷方法管理项目流程&#xff0c;持续迭代并更快、更高效地为客户持续交付可用的产品。除了团队&#xff0c;国内外很多个人独立开发者也在尝试将敏捷应用到自己的开发工作流程中&#xff0c;但大多…

git常用命令小记

&#xff08;文章正在持续更新中&#xff09; git init - 在当前目录下初始化一个新的 Git 仓库。 git clone [url] - 克隆远程仓库到本地。 git add [file] - 将文件添加到暂存区。 git commit -m "commit message" - 将添加到暂存区的文件提交到本地仓库。 git pus…

【Linux | 编程实践】 crontab 命令编辑大全 scp 应用

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…

P9 链表 清空链表|销毁链表

目录 前言 01销毁链表 02 清空链表 测试代码 前言 &#x1f3ac; 个人主页&#xff1a;ChenPi &#x1f43b;推荐专栏1: 《C_ChenPi的博客-CSDN博客》✨✨✨ &#x1f525; 推荐专栏2: 《Linux C应用编程&#xff08;概念类&#xff09;_ChenPi的博客-CSDN博客》✨✨✨ …

Redis5新特性-stream

Stream队列 Redis5.0 最大的新特性就是多出了一个数据结构 Stream&#xff0c;它是一个新的强大的 支持多播的可持久化的消息队列&#xff0c;作者声明 Redis Stream 地借鉴了 Kafka 的设计。 生产者 xadd 追加消息 xdel 删除消息&#xff0c;这里的删除仅仅是设置了标志位&am…

sqlserver2019基本操作

一、下载管理工具 sql server2019官方的管理工具是SQL Server Management Studio 简称SSMS。 下载连接: https://learn.microsoft.com/zh-CN/sql/ssms/download-sql-server-management-studio-ssms?viewsql-server-ver16二、登录 1.连接服务器 点击 文件 --> 连接对象资…

模型层——多表操作

多表操作 一 创建模型 实例&#xff1a;我们来假定下面这些概念&#xff0c;字段和关系 作者模型&#xff1a;一个作者有姓名和年龄。 作者详细模型&#xff1a;把作者的详情放到详情表&#xff0c;包含生日&#xff0c;手机号&#xff0c;家庭住址等信息。作者详情模型和作…

Python搭建代理IP池实现接口设置与整体调度

目录 前言 1. 搭建免费代理IP爬虫 2. 将获取到的代理IP存储到数据库中 3. 构建一个代理IP池 4. 实现调度器来调度代理IP池 5. 实现带有代理IP池的爬虫 总结 前言 在网络爬虫中&#xff0c;代理IP池是一个非常重要的组件。由于许多网站对单个IP的请求有限制&#xff0c;…