陀螺仪LSM6DSV16X与AI集成(1)----轮询获取陀螺仪数据

news2025/1/14 20:49:31

陀螺仪LSM6DSV16X与AI集成.1--轮询获取陀螺仪数据

  • 概述
  • 视频教学
  • 样品申请
  • 通信模式
  • 管脚定义
  • IIC通信模式
  • 速率
  • 生成STM32CUBEMX
  • 串口配置
  • IIC配置
  • CS和SA0设置
  • 串口重定向
  • 参考程序
  • 初始换管脚
  • 获取ID
  • 复位操作
  • BDU设置
  • 设置量程和速率
  • 配置过滤链
  • 轮询读取数据
  • 主程序
  • 演示

概述

本文将介绍如何使用 LSM6DSV16X 传感器来读取数据。主要步骤包括初始化传感器接口、验证设备ID、配置传感器的数据输出率和滤波器,以及通过轮询方式持续读取加速度、角速率和温度数据。读取到的数据会被转换为适当的单位并通过串行通信输出。这个代码是一个很好的起点,用于了解如何操作 LSM6DSV16X 传感器并获取其数据。

最近在弄ST和瑞萨RA的课程,需要样片的可以加群申请:615061293 。

在这里插入图片描述

视频教学

样品申请

https://www.wjx.top/vm/OhcKxJk.aspx#

通信模式

对于LSM6DSV16X,可以使用SPI或者IIC进行通讯。
最小系统图如下所示。
在这里插入图片描述

在CS管脚为1的时候,为IIC模式
在这里插入图片描述

本文使用的板子原理图如下所示。
在这里插入图片描述

管脚定义

在这里插入图片描述

IIC通信模式

在使用IIC通讯模式的时候,SA0是用来控制IIC的地址位的。
对于IIC的地址,可以通过SDO/SA0引脚修改。SDO/SA0引脚可以用来修改设备地址的最低有效位。如果SDO/SA0引脚连接到电源电压,LSb(最低有效位)为’1’(地址1101011b);否则,如果SDO/SA0引脚连接到地线,LSb的值为’0’(地址1101010b)。

在这里插入图片描述

IIC接口如下所示。
主要使用的管脚为CS、SCL、SDA、SA0。
在这里插入图片描述

速率

该模块支持的速度为普通模式(100k)和快速模式(400k)。
在这里插入图片描述

生成STM32CUBEMX

用STM32CUBEMX生成例程,这里使用MCU为STM32WB55RG。
配置时钟树,配置时钟为32M。

在这里插入图片描述

串口配置

查看原理图,PB6和PB7设置为开发板的串口。

在这里插入图片描述
配置串口。

在这里插入图片描述

IIC配置

在这里插入图片描述
配置IIC为快速模式,速度为400k。
在这里插入图片描述

CS和SA0设置

在这里插入图片描述

串口重定向

打开魔术棒,勾选MicroLIB

在这里插入图片描述

在main.c中,添加头文件,若不添加会出现 identifier “FILE” is undefined报错。

/* USER CODE BEGIN Includes */
#include "stdio.h"
/* USER CODE END Includes */

函数声明和串口重定向:

/* USER CODE BEGIN PFP */
int fputc(int ch, FILE *f){
	HAL_UART_Transmit(&huart1 , (uint8_t *)&ch, 1, 0xFFFF);
	return ch;
}
/* USER CODE END PFP */

参考程序

https://github.com/STMicroelectronics/lsm6dsv16x-pid/tree/main

初始换管脚

由于需要向LSM6DSV16X_I2C_ADD_L写入以及为IIC模式。
在这里插入图片描述

所以使能CS为高电平,配置为IIC模式。
配置SA0为高电平。

	printf("123123123");
  lsm6dsv16x_reset_t rst;
  stmdev_ctx_t dev_ctx;
  /* Initialize mems driver interface */
  dev_ctx.write_reg = platform_write;
  dev_ctx.read_reg = platform_read;
  dev_ctx.handle = &SENSOR_BUS;


  HAL_GPIO_WritePin(CS_GPIO_Port, CS_Pin, GPIO_PIN_SET);
  HAL_GPIO_WritePin(SA0_GPIO_Port, SA0_Pin, GPIO_PIN_RESET);

获取ID

可以向WHO_AM_I (0Fh)获取固定值,判断是否为0x70。

在这里插入图片描述

lsm6dsv16x_device_id_get为获取函数。

在这里插入图片描述

对应的获取ID驱动程序,如下所示。

  /* Wait sensor boot time */
  platform_delay(BOOT_TIME);
  /* Check device ID */
  lsm6dsv16x_device_id_get(&dev_ctx, &whoamI);
	printf("LSM6DSV16X_ID=0x%x,whoamI=0x%x",LSM6DSV16X_ID,whoamI);
  if (whoamI != LSM6DSV16X_ID)
    while (1);

复位操作

可以向CTRL3 (12h)的SW_RESET寄存器写入1进行复位。
在这里插入图片描述

lsm6dsv16x_reset_set为重置函数。
在这里插入图片描述

对应的驱动程序,如下所示。

  /* Restore default configuration */
  lsm6dsv16x_reset_set(&dev_ctx, LSM6DSV16X_RESTORE_CTRL_REGS);
  do {
    lsm6dsv16x_reset_get(&dev_ctx, &rst);
  } while (rst != LSM6DSV16X_READY);

BDU设置

在很多传感器中,数据通常被存储在输出寄存器中,这些寄存器分为两部分:MSB和LSB。这两部分共同表示一个完整的数据值。例如,在一个加速度计中,MSB和LSB可能共同表示一个加速度的测量值。
连续更新模式(BDU = ‘0’):在默认模式下,输出寄存器的值会持续不断地被更新。这意味着在你读取MSB和LSB的时候,寄存器中的数据可能会因为新的测量数据而更新。这可能导致一个问题:当你读取MSB时,如果寄存器更新了,接下来读取的LSB可能就是新的测量值的一部分,而不是与MSB相对应的值。这样,你得到的就是一个“拼凑”的数据,它可能无法准确代表任何实际的测量时刻。
块数据更新(BDU)模式(BDU = ‘1’):当激活BDU功能时,输出寄存器中的内容不会在读取MSB和LSB之间更新。这就意味着一旦开始读取数据(无论是先读MSB还是LSB),寄存器中的那一组数据就被“锁定”,直到两部分都被读取完毕。这样可以确保你读取的MSB和LSB是同一测量时刻的数据,避免了读取到代表不同采样时刻的数据。
简而言之,BDU位的作用是确保在读取数据时,输出寄存器的内容保持稳定,从而避免读取到拼凑或错误的数据。这对于需要高精度和稳定性的应用尤为重要。
可以向CTRL3 (12h)的BDU寄存器写入1进行开启。

在这里插入图片描述

对应的驱动程序,如下所示。

  /* Enable Block Data Update */
  lsm6dsv16x_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);

设置量程和速率

速率可以通过CTRL1 (10h)设置加速度速率和CTRL2 (11h)进行设置角速度速率。

在这里插入图片描述

在这里插入图片描述
设置加速度量程可以通过CTRL8 (17h)进行设置。
设置角速度量程可以通过CTRL6 (15h)进行设置。

在这里插入图片描述
在这里插入图片描述

设置加速度和角速度的量程和速率可以使用如下函数。

  /* Set Output Data Rate.
   * Selected data rate have to be equal or greater with respect
   * with MLC data rate.
   */
  lsm6dsv16x_xl_data_rate_set(&dev_ctx, LSM6DSV16X_ODR_AT_7Hz5);
  lsm6dsv16x_gy_data_rate_set(&dev_ctx, LSM6DSV16X_ODR_AT_15Hz);
  /* Set full scale */
  lsm6dsv16x_xl_full_scale_set(&dev_ctx, LSM6DSV16X_2g);
  lsm6dsv16x_gy_full_scale_set(&dev_ctx, LSM6DSV16X_2000dps);

配置过滤链

  /* Configure filtering chain */
  filt_settling_mask.drdy = PROPERTY_ENABLE;
  filt_settling_mask.irq_xl = PROPERTY_ENABLE;
  filt_settling_mask.irq_g = PROPERTY_ENABLE;
  lsm6dsv16x_filt_settling_mask_set(&dev_ctx, filt_settling_mask);
  lsm6dsv16x_filt_gy_lp1_set(&dev_ctx, PROPERTY_ENABLE);
  lsm6dsv16x_filt_gy_lp1_bandwidth_set(&dev_ctx, LSM6DSV16X_GY_ULTRA_LIGHT);
  lsm6dsv16x_filt_xl_lp2_set(&dev_ctx, PROPERTY_ENABLE);
  lsm6dsv16x_filt_xl_lp2_bandwidth_set(&dev_ctx, LSM6DSV16X_XL_STRONG);

轮询读取数据

进入一个无限循环,不断检查是否有新的数据(加速度、角速率、温度)可用。
对于每种类型的数据(加速度、角速率、温度),如果有新数据,就读取原始数据,转换为对应的单位(毫克、毫度每秒、摄氏度),并通过串行输出打印。

对于数据是否准备好,可以访问STATUS_REG (1Eh)进行判断。
在这里插入图片描述

    /* Read output only if new xl value is available */
    lsm6dsv16x_flag_data_ready_get(&dev_ctx, &drdy);

对于加速度数据,可以通过28-2D进行获取。
在这里插入图片描述
在这里插入图片描述
加速度数据首先以原始格式(通常是整数)读取,然后需要转换为更有意义的单位,如毫重力(mg)。这里的转换函数 lsm6dsv16x_from_fs2_to_mg() 根据加速度计的量程(这里假设为±2g)将原始数据转换为毫重力单位。
acceleration_mg[0] = lsm6dsv16x_from_fs2_to_mg(data_raw_acceleration[0]); 等三行代码分别转换 X、Y、Z 轴的加速度数据。

在这里插入图片描述

● LSM6DSV16X 加速度计通常会有一个固定的位分辨率,比如 16 位(即输出值是一个 16 位的整数)。这意味着加速度计可以输出的不同值的总数是 2^16=65536。这些值均匀地分布在 -2g 到 +2g 的范围内。
● 因此,这个范围(4g 或者 4000 mg)被分成了 65536 个步长。
● 每个步长的大小是 4000 mg/65536≈0.061 mg/LSB
所以,函数中的乘法 ((float_t)lsb) * 0.061f 是将原始的整数值转换为以毫重力(mg)为单位的加速度值。这个转换对于将加速度计的原始读数转换为实际的物理测量值是必需的。

    if (drdy.drdy_xl) {
      /* Read acceleration field data */
      memset(data_raw_acceleration, 0x00, 3 * sizeof(int16_t));
      lsm6dsv16x_acceleration_raw_get(&dev_ctx, data_raw_acceleration);
      acceleration_mg[0] =
        lsm6dsv16x_from_fs2_to_mg(data_raw_acceleration[0]);
      acceleration_mg[1] =
        lsm6dsv16x_from_fs2_to_mg(data_raw_acceleration[1]);
      acceleration_mg[2] =
        lsm6dsv16x_from_fs2_to_mg(data_raw_acceleration[2]);
			printf("Acceleration [mg]:%4.2f\t%4.2f\t%4.2f\r\n",acceleration_mg[0], acceleration_mg[1], acceleration_mg[2]);
    }	

对于角速度数据,可以通过22-2D进行获取。

在这里插入图片描述
在这里插入图片描述

在 LSM6DSV16X 传感器中,函数 lsm6dsv16x_from_fs2000_to_mdps(int16_t lsb) 用于将原始的传感器数据(以最小可分辨位(Least Significant Bit,简称 LSB)为单位)转换为以毫度每秒(mdps)为单位的角速度值。这里的 70.0f 是一个转换因子,用于从原始数据单位转换到实际的物理单位。
具体来说,这个转换因子是基于传感器的灵敏度或比例因子。对于 LSM6DSV16X 传感器,当设置为 ±2000 dps (度每秒) 的满量程时,每个 LSB 代表的角速度值为 70 mdps。

在这里插入图片描述

    /* Read output only if new xl value is available */
    if (drdy.drdy_gy) {
      /* Read angular rate field data */
      memset(data_raw_angular_rate, 0x00, 3 * sizeof(int16_t));
      lsm6dsv16x_angular_rate_raw_get(&dev_ctx, data_raw_angular_rate);
      angular_rate_mdps[0] =
        lsm6dsv16x_from_fs2000_to_mdps(data_raw_angular_rate[0]);
      angular_rate_mdps[1] =
        lsm6dsv16x_from_fs2000_to_mdps(data_raw_angular_rate[1]);
      angular_rate_mdps[2] =
        lsm6dsv16x_from_fs2000_to_mdps(data_raw_angular_rate[2]);
			printf("Angular rate [mdps]:%4.2f\t%4.2f\t%4.2f\r\n",angular_rate_mdps[0], angular_rate_mdps[1], angular_rate_mdps[2]);

    }

对于温度数据,可以通过20-21进行获取。

    if (drdy.drdy_temp) {
      /* Read temperature data */
      memset(&data_raw_temperature, 0x00, sizeof(int16_t));
      lsm6dsv16x_temperature_raw_get(&dev_ctx, &data_raw_temperature);
      temperature_degC = lsm6dsv16x_from_lsb_to_celsius(
                           data_raw_temperature);
			printf("Temperature [degC]:%6.2f\r\n", temperature_degC);

    }

主程序

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
		
   lsm6dsv16x_data_ready_t drdy;

    /* Read output only if new xl value is available */
    lsm6dsv16x_flag_data_ready_get(&dev_ctx, &drdy);

    if (drdy.drdy_xl) {
      /* Read acceleration field data */
      memset(data_raw_acceleration, 0x00, 3 * sizeof(int16_t));
      lsm6dsv16x_acceleration_raw_get(&dev_ctx, data_raw_acceleration);
      acceleration_mg[0] =
        lsm6dsv16x_from_fs2_to_mg(data_raw_acceleration[0]);
      acceleration_mg[1] =
        lsm6dsv16x_from_fs2_to_mg(data_raw_acceleration[1]);
      acceleration_mg[2] =
        lsm6dsv16x_from_fs2_to_mg(data_raw_acceleration[2]);
			printf("Acceleration [mg]:%4.2f\t%4.2f\t%4.2f\r\n",acceleration_mg[0], acceleration_mg[1], acceleration_mg[2]);
    }		
		
    /* Read output only if new xl value is available */
    if (drdy.drdy_gy) {
      /* Read angular rate field data */
      memset(data_raw_angular_rate, 0x00, 3 * sizeof(int16_t));
      lsm6dsv16x_angular_rate_raw_get(&dev_ctx, data_raw_angular_rate);
      angular_rate_mdps[0] =
        lsm6dsv16x_from_fs2000_to_mdps(data_raw_angular_rate[0]);
      angular_rate_mdps[1] =
        lsm6dsv16x_from_fs2000_to_mdps(data_raw_angular_rate[1]);
      angular_rate_mdps[2] =
        lsm6dsv16x_from_fs2000_to_mdps(data_raw_angular_rate[2]);
			printf("Angular rate [mdps]:%4.2f\t%4.2f\t%4.2f\r\n",angular_rate_mdps[0], angular_rate_mdps[1], angular_rate_mdps[2]);

    }

    if (drdy.drdy_temp) {
      /* Read temperature data */
      memset(&data_raw_temperature, 0x00, sizeof(int16_t));
      lsm6dsv16x_temperature_raw_get(&dev_ctx, &data_raw_temperature);
      temperature_degC = lsm6dsv16x_from_lsb_to_celsius(
                           data_raw_temperature);
			printf("Temperature [degC]:%6.2f\r\n", temperature_degC);

    }		
		
		HAL_Delay(100);

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */

演示

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1281435.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【算法】单调栈题单——矩阵系列⭐

文章目录 题目列表84. 柱状图中最大的矩形(单调栈找左右两边第一个更低的位置)85. 最大矩形⭐⭐⭐⭐⭐解法1——使用柱状图的优化暴力方法解法2——单调栈 :归因到 84. 柱状图中最大的矩形 🐂 1504. 统计全 1 子矩形⭐解法1——枚…

关于媒体查询不能生效的原因

问题 今天写媒体查询,遇到了个问题,卡了很久,引入三个样式:mainPageCommon.css、mainPageBig.css、mainPageSmall.css。其中的两个样式可以生效,但是小尺寸的媒体查询不能生效,这里很奇怪!&…

STM32F407-14.3.10-01PWM模式

PWM 模式 脉冲宽度调制模式可以生成一个信号,该信号频率由 TIMx_ARR⑩ 寄存器值决定,其占空比由 TIMx_CCRx⑤ 寄存器值决定。 通过向 TIMx_CCMRx 寄存器中的 OCxM⑰ 位写入 110 (PWM 模式 1)或 111 (PWM 模式 2&#…

C++学习之路(十七)C++ 用Qt5实现一个工具箱(增加托盘图标并且增加显示和退出菜单)- 示例代码拆分讲解

上篇文章,我们用 Qt5 实现了在小工具箱中添加了《为屏幕颜色提取功能增加一个点击复制的功能》功能。今天我们增加一个比较正式点的功能,就是增加托盘图标并且增加显示和退出菜单(越来越像回事了吧 😁 )。下面我们就来…

ssm医院门诊互联电子病历管理信息系统源码和论文

摘 要 网络的广泛应用给生活带来了十分的便利。所以把医院门诊互联电子病历管理与现在网络相结合,利用java技术建设医院门诊互联电子病历管理信息系统,实现医院门诊互联电子病历的信息化。则对于进一步提高医院门诊互联电子病历管理发展,对…

【电机控制】PMSM无感foc控制(五)相电流检测及重构 — 单电阻采样

0. 前言 相电流采样再FOC控制中是一个关键的环节,鉴于成本和易用性,目前应用较多的相电流采样方式是分流电阻采样,包括单电阻、双电阻以及三电阻采样法。 本章节先讲解单电阻采样相电流的检测及重构技术,在下一章讲解双电阻和三电…

项目实战一-性能测试筑基

这里写目录标题 一、为什么程序会出现性能问题、性能问题是怎么出现的?二、功能测试和性能测试的区别是什么?三、核心性能指标1、用户角度核心a、响应时间:b、并发量 2、成本角度3、运维角度面试题、并发量和吞吐量得区别?a、吞吐…

Qt 如何操作SQLite3数据库?数据库创建和表格的增删改查?

# 前言 项目源码下载 https://gitcode.com/m0_45463480/QSQLite3/tree/main # 第一步 项目配置 平台:windows10 Qt版本:Qt 5.14.2 在.pro添加 QT += sql 需要的头文件 #include <QSqlDatabase>#include <QSqlError>#include <QSqlQuery>#include &…

【强化学习算法】Q-learning原理及实现

实现代码github仓库&#xff1a;RL-BaselineCode 代码库将持续更新&#xff0c;希望得到您的支持⭐&#xff0c;让我们一起进步&#xff01; 文章目录 1. 原理讲解1.1 Q值更新公式1.2 ε-greedy随机方法 2. 算法实现2.1 算法简要流程2.2 游戏场景2.3 算法实现 3. 参考文章 1. 原…

[架构之路-256]:目标系统 - 设计方法 - 软件工程 - 软件设计 - 架构设计 - 软件系统不同层次的复用与软件系统向越来越复杂的方向聚合

目录 前言&#xff1a; 一、CPU寄存器级的复用&#xff1a;CPU寄存器 二、指令级复用&#xff1a;二进制指令 三、过程级复用&#xff1a;汇编语言 四、函数级复用&#xff1a;C语言 五、对象级复用&#xff1a;C, Java, Python 六、组件级复用 七、服务级复用 八、微…

win10下使用内置Linux

Win10安装Ubuntu子系统 #推荐博客 https://www.cnblogs.com/xiaoliangge/p/9124089.html #推荐视频 https://www.bilibili.com/video/BV184411i7As?spm_id_from333.337.search-card.all.click #Ubuntu18.04安装教程 https://edu.csdn.net/skill/gml/gml-214229ddcc6a496ba175…

基于hadoop下的Kafka分布式安装

简介 Kafka是一种分布式流处理平台&#xff0c;它具有高吞吐量、可扩展性、可靠性、实时性和灵活性等优点。它能够支持每秒数百万条消息的传输&#xff0c;并且可以通过增加节点来增加吞吐量和存储容量。Kafka通过将数据复制到多个节点来实现数据冗余和高可用性&#xff0c;即使…

JAVA代码优化:Easy Excel(操作Excel文件的开源工具)

Easy Excel官网&#xff1a; EasyExcel官方文档 - 基于Java的Excel处理工具 | Easy Excel (alibaba.com) https://easyexcel.opensource.alibaba.com/ Easy Excel的特点和优势&#xff1a; 简单易用&#xff1a;Easy Excel提供了简洁的API&#xff0c;使用起来非常方便。开发…

xxl-job(分布式调度任务)

简介 针对分布式任务调度的需求&#xff0c;市场上出现了很多的产品&#xff1a; 1)TBSchedule&#xff1a;淘宝推出的一款非常优秀的高性能分布式调度框架&#xff0c;目前被应用于阿里&#xff0c;京东&#xff0c;支付宝&#xff0c;国美等很多互联网企业的流程调度系统中。…

Linux 基本语句_14_信号灯实验

原理&#xff1a; Send进程通过建立共享内存区域&#xff0c;并向其中写入数据&#xff0c;Recive通过与共享内存连接读取其中的数据。 但是如果进程进行读取操作的时候其他进程再次写入会产生数据丢失&#xff0c;产生竞态&#xff0c;为了确保在某段时间内只有一个操作&…

【Node.js】Node.js环境下载与安装教程(Windows系统)

前言 Node.js是一个基于Chrome V8引擎的JavaScript运行时环境&#xff0c;可以让你使用JavaScript进行服务器端编程。本教程将向你展示如何在Windows系统上下载和安装Node.js环境。 下载 首先&#xff0c;你需要下载Node.js环境。 打开Node.js官方网站&#xff1a;https://no…

Leetcode2661. 找出叠涂元素

Every day a Leetcode 题目来源&#xff1a;2661. 找出叠涂元素 解法1&#xff1a;哈希 题目很绕&#xff0c;理解题意后就很简单。 由于矩阵 mat 中每一个元素都不同&#xff0c;并且都在数组 arr 中&#xff0c;所以首先我们用一个哈希表 hash 来存储 mat 中每一个元素的…

C语言中的动态内存管理

在C语言中&#xff0c;动态内存管理是通过一系列的标准库函数来实现的&#xff0c;这些函数包括malloc, free, calloc 和 realloc。它们允许程序在运行时动态地分配和释放内存&#xff0c;这是管理复杂数据结构&#xff08;如链表、树等&#xff09;时非常有用的功能。 为什么…

为何要3次握手?TCP协议的稳定性保障机制

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f33a; 仓库主页&#xff1a; Gitee &#x1f4ab; Github &#x1f4ab; GitCode &#x1f496; 欢迎点赞…

MYSQL练题笔记-聚合函数-每月交易

一、题目相关内容 1&#xff09;相关的表和题目 2&#xff09;帮助理解题目的示例&#xff0c;提供返回结果的格式 二、初步的理解 是需要知道每个月和每个国家/地区的事务数及其总金额&#xff0c;每个月和每个国家/地区已批准的事务数及其总金额&#xff1b;以上的理解还是…