TimeGPT:时间序列预测模型实例

news2025/1/15 17:43:37

时间序列预测领域正在经历一个非常激动人心的时期。在过去的三年里,我们见证了许多重要的贡献,如N-BEATS、N-HiTS、PatchTST和TimesNet等。同时,大型语言模型(LLM)近来在流行度方面取得了很大的成功,例如ChatGPT,因为它们可以适应各种任务而无需进一步训练。

这引出了一个问题:类似于自然语言处理中存在的基础模型,是否可以存在用于时间序列的基础模型?是否可能对大量时间序列数据进行预训练的大型模型然后能够在未见数据上产生准确的预测?

通过Azul Garza和Max Mergenthaler-Canseco提出的TimeGPT-1,作者将LLM背后的技术和架构调整到了预测领域,成功地构建了第一个能够进行零次推理的时间序列基础模型。在本文中,我们首先探讨TimeGPT背后的架构以及该模型的训练方式。然后,我们将其应用于一个预测项目,评估其性能与其他最先进的方法,如N-BEATS、N-HiTS和PatchTST等进行对比。

探索TimeGPT

正如前面提到的,TimeGPT是首次尝试创建用于时间序列预测的基础模型。58e75003dd7347b3c1d90672663cb1b5.jpeg

如何对TimeGPT进行训练以在未见数据上进行推理的示例

从上图中,我们可以看到TimeGPT背后的一般思想是在大量不同领域的数据上训练模型,然后在未见数据上进行零次推理。当然,这种方法依赖于迁移学习,即模型能够使用其在训练过程中获得的知识来解决新任务。现在,这只有在模型足够大且在大量数据上进行训练时才能实现。

训练TimeGPT

为此,作者在超过1000亿个数据点上训练了TimeGPT,所有这些数据点都来自开源时间序列数据。该数据集涵盖了各种领域,从金融、经济和天气到网络流量、能源和销售。

请注意,作者并没有透露用于策划1000亿个数据点的公共数据的来源。

这种多样性对于基础模型的成功至关重要,因为它可以学习不同的时间模式,从而更好地进行泛化。

例如,我们可以预期天气数据具有每天(白天较热,夜晚较冷)和每年的季节性,而车流量数据可能具有每天(白天车辆更多)和每周的季节性(工作日车辆更多)。

为确保模型的健壮性和泛化能力,预处理被保持到最小。实际上,只填充了缺失值,其余保持在原始形式。虽然作者没有指定数据插补的方法,但我怀疑使用了某种插值技术,如线性插值、样条插值或移动平均插值。然后,该模型在多天内进行训练,期间优化了超参数和学习率。虽然作者没有透露训练需要多少天和多少个GPU,但我们知道该模型是在PyTorch中实现的,它使用Adam优化器和学习速率衰减策略。

TimeGPT的架构

TimeGPT利用基于Google和多伦多大学在2017年的开创性工作的自注意力机制的Transformer架构。

ccb7d2ece3e728415f9f4dcdac470e72.jpeg

从上图中,我们可以看到TimeGPT使用了完整的编码器-解码器Transformer架构

输入可以包含一窗历史数据,以及外生数据,比如一次性事件或另一个时间序列。

输入被馈送到模型的编码器部分。编码器内部的注意力机制然后从输入中学习不同的属性。然后将其馈送到解码器,解码器使用学到的信息生成预测。当达到用户设置的预测时间范围的长度时,预测序列就结束了。值得注意的是,作者在TimeGPT中实现了符合性预测,允许模型基于历史误差估计预测区间。

TimeGPT的功能

考虑到TimeGPT是构建时间序列基础模型的首次尝试,它具有各种广泛的功能。首先,由于TimeGPT是一个预训练模型,这意味着我们可以在没有在特定数据上进行训练的情况下生成预测。当然,仍然可以对模型进行微调以适应我们的数据。

其次,该模型支持用于预测目标的外生变量,并且可以处理多变量预测任务。最后,通过使用符合性预测,TimeGPT可以估计预测区间。这反过来使模型能够执行异常检测。基本上,如果数据点落在99%置信区间之外,那么模型将其标记为异常。

请记住,所有这些任务都可以使用零次推理或进行一些微调来完成,这对于时间序列预测领域来说是一种范式的彻底变革。现在,我们对TimeGPT有了更加坚实的理解,知道它是如何工作和如何训练的,让我们看看该模型的实际表现。

使用TimeGPT进行预测

现在,让我们将TimeGPT应用于一个预测任务,并将其性能与其他模型进行比较。请注意,在撰写本文时,TimeGPT仅通过API可访问,而且它处于封闭测试阶段。正如前面提到的,该模型是在来自公开可用数据的1000亿个数据点上进行训练的。由于作者没有指定实际使用的数据集,我认为测试该模型是否具有数据集可能在训练过程中看到的知名基准数据集,如ETT或天气数据,是不合理的。

导入库并读取数据

自然的第一步是导入用于这个实验的库。

import pandas as pd
import numpy as np
import datetime
import matplotlib.pyplot as plt


from neuralforecast.core import NeuralForecast
from neuralforecast.models import NHITS, NBEATS, PatchTST


from neuralforecast.losses.numpy import mae, mse


from nixtlats import TimeGPT


%matplotlib inline

然后,为了访问TimeGPT模型,我们从文件中读取API密钥。请注意,我没有将API密钥分配给环境变量,因为访问权限仅限于两周。

with open("data/timegpt_api_key.txt", 'r') as file:
        API_KEY = file.read()

然后,我们可以读取数据。

df = pd.read_csv('data/medium_views_published_holidays.csv')
df['ds'] = pd.to_datetime(df['ds'])


df.head()

7e5b9ce96da1033d1add51715f738ced.jpeg

我们数据集的前五行

从上图中,我们可以看到数据集的格式与使用Nixtla等其他开源库时的格式相同。

我们有一个unique_id列,用于标记不同的时间序列,但在我们的情况下,我们只有一个系列。列y表示我博客的日访问量,published是一个简单的标志,用于标记发布新文章的一天(1)或未发布文章的一天(0)。直观地说,我们知道发布新内容时,访问量通常会在一段时间内增加。最后,列is_holiday指示美国是否有假期。直观地说,在假期期间,访问我的博客的人数会减少。现在,让我们可视化我们的数据并寻找明显的模式。

published_dates = df[df['published'] == 1]
fig, ax = plt.subplots(figsize=(12,8))
ax.plot(df['ds'], df['y'])
ax.scatter(published_dates['ds'], published_dates['y'], marker='o', color='red', label='New article')
ax.set_xlabel('Day')
ax.set_ylabel('Total views')
ax.legend(loc='best')
fig.autofmt_xdate()
plt.tight_layout()

61d1e3754dbf647d067daf6fb9047542.jpeg

博客的日访问量

从上图中,我们已经可以看到一些有趣的行为。首先,注意红色点表示新发布的文章,它们几乎立即在访问量中出现峰值。我们还注意到2021年的活动较少,这反映在我的博客的日访问量较少。最后,在2023年,我们注意到在发布文章后出现了一些异常的访问高峰。在放大数据后,我们还发现了明显的每周季节性。

14be46ba5183b3d756e2f6dc55e49337.jpeg

博客的日访问量。在这里,我们看到了明显的每周季节性,周末访问的人数较少

从上图中,我们现在可以看到,在周末,博客的访问者较少,而在工作日,访问者较多。考虑到所有这些,让我们看看如何使用TimeGPT进行预测。

使用TimeGPT进行预测

首先,让我们将数据集拆分为训练集和测试集。在这里,我将保留168个时间步长用于测试集,这对应于24周的每日数据。

train = df[:-168]
test = df[-168:]

然后,我们将预测视野设置为七天,因为我有兴趣预测整个星期的每日访问量。

现在,该API不提供交叉验证的实现。因此,我们创建自己的循环,以一次生成七个预测,直到我们对整个测试集进行了预测。

future_exog = test[['unique_id', 'ds', 'published', 'is_holiday']]


timegpt = TimeGPT(token=API_KEY)


timegpt_preds = []


for i in range(0, 162, 7):


    timegpt_preds_df = timegpt.forecast(
        df=df.iloc[:1213+i],
        X_df = future_exog[i:i+7],
        h=7,
        finetune_steps=10,
        id_col='unique_id',
        time_col='ds',
        target_col='y'
    )
    
    preds = timegpt_preds_df['TimeGPT']
    
    timegpt_preds.extend(preds)

在上面的代码块中,请注意我们必须传递我们外生变量的未来值。这是可以的,因为它们是静态变量。我们知道假期的未来日期,博客作者个人也知道他计划在何时发布文章。还要注意,我们使用finetune_steps参数对TimeGPT进行了微调。一旦循环完成,我们就可以将预测添加到测试集中。同样,TimeGPT每次生成七个预测,直到获得168个预测,以便我们可以评估其在预测下周每日访问量方面的能力。

test['TimeGPT'] = timegpt_preds
test.head()

62348786a2c99dcb0a9ab48dea5258e6.jpeg

TimeGPT的预测

使用N-BEATS、N-HiTS和PatchTST进行预测

现在,让我们应用其他方法,看看在我们的数据集上对这些模型进行专门训练是否能产生更好的预测。对于这个实验,如前所述,我们使用N-BEATS、N-HiTS和PatchTST。

horizon = 7


models = [NHITS(h=horizon,
               input_size=5*horizon,
               max_steps=50),
         NBEATS(h=horizon,
               input_size=5*horizon,
               max_steps=50),
         PatchTST(h=horizon,
                 input_size=5*horizon,
                 max_steps=50)]

接下来,我们初始化NeuralForecast对象,并指定我们数据的频率,在这种情况下是每日。

nf = NeuralForecast(models=models, freq='D')

然后,我们对24个窗口的7个时间步执行交叉验证,以获得与用于TimeGPT的测试集对齐的预测。

preds_df = nf.cross_validation(
  df=df, 
  static_df=future_exog , 
  step_size=7, 
  n_windows=24
)

然后,我们可以简单地将来自TimeGPT的预测添加到这个新的`preds_df` DataFrame 中,以获得一个包含所有模型预测的单个 DataFrame。

preds_df['TimeGPT'] = test['TimeGPT']

f2937179e6617a126987e615ff8de6a8.jpeg

接下来,我们准备评估每个模型的性能

评估

在测量性能指标之前,让我们可视化每个模型在我们的测试集上的预测。231f59f8c72b52ea2dad771a06883ed4.jpeg

可视化每个模型的预测

首先,我们看到每个模型之间有很多重叠。然而,我们注意到N-HiTS预测了两个实际上没有实现的高峰。此外,似乎PatchTST经常低估。然而,TimeGPT似乎总体上与实际数据相当吻合。

当然,评估每个模型的性能的唯一方法是测量性能指标。在这里,我们使用了平均绝对误差(MAE)和均方误差(MSE)。此外,我们将预测四舍五入为整数,因为在博客的日常访问者背景下,小数是没有意义的。

preds_df = preds_df.round({
  'NHITS': 0,
  'NBEATS': 0,
  'PatchTST': 0,
  'TimeGPT': 0
})
data = {'N-HiTS': [mae(preds_df['NHITS'], preds_df['y']), mse(preds_df['NHITS'], preds_df['y'])],
     'N-BEATS': [mae(preds_df['NBEATS'], preds_df['y']), mse(preds_df['NBEATS'], preds_df['y'])],
     'PatchTST': [mae(preds_df['PatchTST'], preds_df['y']), mse(preds_df['PatchTST'], preds_df['y'])],
     'TimeGPT': [mae(preds_df['TimeGPT'], preds_df['y']), mse(preds_df['TimeGPT'], preds_df['y'])]}
metrics_df = pd.DataFrame(data=data)
metrics_df.index = ['mae', 'mse']
metrics_df.style.highlight_min(color='lightgreen', axis=1)

d990c5ccf2b2c83c2f4064ab04bed10e.jpeg

从上图可以看出,TimeGPT是冠军模型,因为它在MAE和MSE方面表现最佳,其次是N-BEATS、PatchTST和N-HiTS。这是一个令人振奋的结果,因为TimeGPT从未见过这个数据集,而且只进行了少量微调。虽然这不是详尽无遗的实验,但我认为它确实展示了基础模型在预测领域可能具有的潜力。

我对TimeGPT的个人看法

虽然我对TimeGPT的简短实验感到兴奋,但我必须指出,原始论文在许多重要领域仍然模糊不清。同样,我们不知道用于训练和测试模型的数据集是什么,因此我们无法真正验证TimeGPT的性能结果,如下所示。


93a60ca57fd2ed3811fedbb065cb29d8.jpeg

TimeGPT的性能结果

从上表中,我们可以看到TimeGPT在月度和周度频率上表现最佳,N-HiTS和Temporal Fusion Transformer(TFT)通常排名第二或第三。然而,由于我们不知道使用了哪些数据,我们无法验证这些指标。在模型是如何训练的以及如何适应处理时间序列数据方面,缺乏透明度。

结论

TimeGPT是用于时间序列预测的第一个基础模型。它利用Transformer架构,经过预训练,使用来自1000亿数据点的零样本推理能力。结合了符合预测技术,该模型可以生成预测区间,并在没有对特定数据集进行训练的情况下执行异常检测。

·  END  ·

HAPPY LIFE

c27aa5bef8b34c15b60a1ad919a942a5.png

本文仅供学习交流使用,如有侵权请联系作者删除

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1281346.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Zotero 安装及常用插件设置指南

Zotero 安装及常用插件设置指南 本指南旨在帮助用户安装并配置 Zotero。通过本教程,您将能够实现以下功能: 界面语言设置为中文使用颜色标签来区分不同阅读状态的文献重要文献标记显示影响因子、JCP和中科院分区翻译插件Sci-Hub 集成 安装和设置步骤…

【算法】单调栈题单(矩阵系列、字典序最小、贡献法)⭐

文章目录 题单来源经典题单496. 下一个更大元素 I(单调栈模板题)503. 下一个更大元素 II(单调栈循环数组)2454. 下一个更大元素 IV(第二个更大的元素:两个单调栈)456. 132 模式(单调…

Dockerfile与Docker网络

一、Dockerfile 1、概念: Dockerfile是用来构建docker镜像的文本文件,是由构建镜像所需要的指令和参数构建的脚本。 2、构建步骤: ① 编写Dockerfile文件 ② docker build命令构建镜像 ③ docker run依据镜像运行容器实例 Dockerfile …

电影《星愿》观后感

上周看了电影《星愿》,看这部电影的动机,主要是回忆的价值大于电影本身的价值,看着影片介绍,是迪士尼工作室成立百年,特别推出的影片。 具体来说,主要是在开头有一段是影片,各个时期的我们看过的…

Echarts大屏可视化_03 定制柱状图

柱状图模块引入 1.找到合适的图表 在echarts中寻找与目标样式相近的图表 Examples - Apache ECharts 2. 引入柱状图 使用立即执行函数构建,防止变量全局污染 实例化对象 将官网中提供的option复制到代码中,并且构建图表 // 柱状图模块1 (function () {/…

若依微服务项目整合rocketMq

原文链接:ttps://mp.weixin.qq.com/s/IYdo_suKvvReqCiEKjCeHw 第一步下载若依项目 第二步安装rocketMq(推荐在linux使用docker部署比较快) 第二步新建一个生产者模块儿,再建一个消费者模块 第四步在getway模块中配置接口映射规…

浅学指针(5)sizeof和strlen的进阶理解

系列文章目录 文章目录 系列文章目录前言1. sizeof和strlen的对⽐1.1 sizeofsizeof不是函数,是运算符 1.2 strlen1.3 sizeof 和 strlen的对⽐ 2. 数组和指针笔试题解析• sizeof(数组名),sizeof中单独放数组名,这⾥的数组名表⽰整个数组&…

一款自动帮你生成UI界面和代码的AI神器

我的新书《Android App开发入门与实战》已于2020年8月由人民邮电出版社出版,欢迎购买。点击进入详情 只要描述你想要的UI是什么样的,它就能帮你生成,是不是很神奇? v0使用 AI 模型根据简单的文本提示生成用户界面和代码&#xff…

有序表常见题型

给定一个数组arr和两个整数a和b求arr中有多少个子数组累加和在a到b这个范围上返回达标的子数组数量 如【3,6,1,9,2】达标的子数组通过暴力求解的方式时间复杂度为O(N的三次方)【找每个子数组占用O&#xf…

MQ - KAFKA 基础篇

##1、KAFKA的核心组件/API Producer API,它允许应用程序向一个或多个 topics 上发送消息记录 Consumer API,允许应用程序订阅一个或多个 topics 并处理为其生成的记录流 Streams API,它允许应用程序作为流处理器,从一个或多个主…

Ubuntu中安装IDEA,并配置桌面快捷方式

1、首先自己下载linux版本的idea 这一步省略不说了 2、在/usr/local/路径下新建安装目录IDEA: mkdir -p /usr/local/IDEA3、执行如下命令,解压下载的压缩包到指定目录: tar -zxvf ideaIU-2022.3.3.tar.gz -C /usr/local/IDEA 注意&#x…

QT 中 QDateTime::currentDateTime() 输出格式备查

基础 QDateTime::currentDateTime() //当前的日期和时间。 QDateTime::toString() //以特定的格式输出时间,格式 yyyy: 年份(4位数) MM: 月份(两位数,07表示七月) dd: 日期(两位数&#xff0c…

Siemens-NXUG二次开发-新建与保存prt文件[Python UF][20231204]

Siemens-NXUG二次开发-新建与保存prt文件[Python UF][20231204] 1.python uf函数1.1 NXOpen.UF.Part.New1.2 NXOpen.UF.Part.Save1.3 NXOpen.UF.Ui.OpenListingWindow1.4 NXOpen.UF.Ui.IsListingWindowOpen1.5 NXOpen.UF.Ui.WriteListingWindow1.6 NXOpen.UF.Ui.SaveListingWin…

深入了解汉字转拼音转换工具:原理与应用

一、引言 汉字作为世界上最古老、最具象形意的文字之一,承载了数千年的历史文明。然而,在现代信息技术环境下,汉字的输入、输出和检索等方面存在一定的局限性。拼音作为汉字的一种音标表达方式,能够有效地解决这些问题。本文将为…

MYSQL练题笔记-排序和分组-全7题已完成

排序和分组这部分共7道题,如下,只说一说3道,其他都写对了,也不难,只有最后一题难一点点,没想到那种解法,一看到主键和外键就想利用连接。 1.销售分析的题目和表相关内容如下 就是利用product_id…

会话 cookie 及隐私的那些事

什么是会话 Cookie? 会话 Cookie 的概念非常简单。 会话 Cookie,也称为临时 Cookie 或内存 Cookie,是网站在浏览会话期间存储在用户计算机或设备上的小数据片段。 它是由网站生成并由您的浏览器存储和使用的多种 Cookie 之一。 常规 Cookie 或“持久”Cookie 是通常在您的…

周周清(1)

项目进度&#xff1a; 最近一直在搭建环境&#xff0c;都没写什么&#xff1a;登陆页面采用登陆注册在同一个界面&#xff0c;用v-if进行渲染&#xff0c;并且借助validation插件中的yup神器进行校验&#xff0c; <script setup> // import { ref } from vue import * …

机器学习 - 导论

简单了解 机器学习关于数据集的概念 、

免费AI洗稿软件【2023最新】

很多时候我们需要通过文字来表达观点、推广产品或服务。然而&#xff0c;长时间的文稿创作不仅费时费力&#xff0c;还容易陷入表达瓶颈。许多写手和从业者纷纷寻找一款方便、高效的AI洗稿工具。 文心一言洗稿软件。这款软件以其独特的文风生成和洗稿功能而备受瞩目。用户只需…

思维模型 搭便车效应

本系列文章 主要是 分享 思维模型&#xff0c;涉及各个领域&#xff0c;重在提升认知。合理坐享其成。 1 搭便车效应的应用 1.1 搭便车效应在商业竞争中的应用 1 被搭便车的AT&T 在 20 世纪 80 年代&#xff0c;美国电信市场由美国电话电报公司&#xff08;AT&T&…