从“AI证件照”到“AI译制片”,爆款AIGC应用的商业化迷思

news2025/1/17 4:00:26

4cfa80b3395ff278e6d2e27beba484fe.jpeg

让郭德纲飙英文、让霉霉说中文的翻译视频生成工具HeyGen和掀起AI证件照热潮的“妙鸭相机”一样,在一阵疯狂刷屏之后,又迅速在各大群里销声匿迹了。

十月份,由HeyGen制作的各种明星跨语言翻译视频,在全网疯传,大家震撼于AIGC地道的中英文表达,完全没有译制片的腔调,惟妙惟肖的音色还原、高度对齐的口型声音,让不少人表示,“真的有被吓到”“配音演员要失业了”……

太阳底下无新事,这个现象级AIGC应用,也逃不过“速朽”的命运。

如今我所在的LLM大模型讨论群里,偶尔有人发一个中英翻译视频,根本无人讨论,可能大多数人连点开看看,都提不起兴趣。

大众的新鲜感很快会过去,“明星译制片”只有看个乐子的娱乐属性,并不是高频刚需,猎奇尝鲜之后,到了真金白银付费的时候,自然风过了无痕。

999ad4b2e9673ce0da98e6d24288210c.png

这一年,大模型无疑是全球最大的热点。但热归热,最终在商业市场立足的大模型应用仍然稀少。

明明已经是“百模争艳”,为何成功产品化的现象级应用,就那么几个?

而这些产品成熟也不缺热度的爆款AIGC应用,为何无法将流量转化为持久的经济效益,商业化仍是一团迷雾?

本文希望从“AI译制片”这个小切口,探讨一下大模型的产品化条件和商业化迷思。

一夜爆红

是产品化的胜利

049d30d6bea16e7d56a124f0d3b6d3a4.png

首先要明确一点,妙鸭也好,HeyGen也好,AIGC应用的一夜爆红,对于大模型产业来说,绝对是一件正面的事。

大模型只是一种基础技术,相当于钢材,大模型厂商相当于炼钢厂,还要有人设计出洗衣机、跑步机、微波炉等一个个具体的产品,新技术才能为人所用。

而HeyGen的一夜爆红,正是产品化的胜利。

技术原理上,跨语言翻译视频制作并不是什么新事物,业内已经有很多科技公司、影视公司、后期制作公司在探索并推出了专业级工具平台。

简单来说,就是升级版的TTS(Text To Speech)技术。利用大语言模型对文本进行更地道的翻译,然后对声音空间进行更好的建模,训练一个跨语种迁移TTS模型,让风格迁移、音色迁移、情感迁移更加鲁棒,合成的语音更加自然、还原。

aa100f1d7758548185902acd842cb264.png

这种技术的特点就是高效,整个翻译过程全自动化,可以批量生成翻译视频。不过在自然度和表现力细节上,还是不如真人配音演员的演绎那么细腻、有创造力。

总结一下就是,HeyGen背后的技术原理,并非什么独家秘籍。

其火爆的原因,是极高的产品化能力。

一般来说,AI技术的产品化,要经历三个步骤:

第一步:选择工具。

工欲善其事,必先利其器,工具是开发人员喜欢花费大量时间争论的话题。HeyGen的工具选择,是比较务实的,甚至看起来特别“小白”,那就是头部闭源模型+开源“大礼包”。

有网友扒出,HeyGen是用Whisper将语音转文字,GPT4(目前未开源)进行文本翻译,声音克隆+生成音频用so-vits-svc,最后用GeneFace++,将翻译后的语音与视频中说话者的嘴唇动作同步。

大模型热潮以来,我们看到了许多开发者在衡量和挑选“最好”的大模型,而市面上有各种不同的基座模型供应商,提供类似的竞品服务,开发者想要找到绝对意义上最好的工具,几乎不可能。这些底层工具如基座模型、编程语言等,先进性都可能变化。选择好相对较优的工具组合,然后快速去开发demo、验证想法、迭代升级,才是开发者最应该做的。

11a5c72b12e2873eb11f079555e7579e.png

第二步:原型设计。

HeyGen选择的工具,无论是GPT4的API,还是开源模型,都是比较容易获取的,但大多数普通人都不会从搜索GitHub仓库、处理软件bug中获得多少乐趣。

就拿跨语种视频翻译来说,其中涉及了多模态内容的翻译,包括语音、文本以及视频,在字幕翻译、语音合成、智能配音方面,目前都有很好的自动化,但将多模态功能集成到一起,实现端到端一键翻译的产品还不多见。

所以,HeyGen构建了一个简单易上手的访问界面,通过集成多种模型、多种工具,降低了翻译门槛,用户只需要上传初始视频-选择目标语言-一键输出,就可以坐等声音克隆完成了。

HeyGen的核心价值,就是让非技术用户不必陷入繁多的技术细节中,不需要安装N多个额外的工具,就可以与多个模型交互,完成转写、翻译、配音、图像处理、音画同步等一大堆复杂的事情,轻松进行高维度、可交互的内容创作。

b22e326d0358147ef7fafa676f4af32e.png

第三步:产品化。

明星、名人的跨语言翻译视频固然精彩,但只是一种用例,并且只能停留于C端用户玩梗,涉及自然人的声音、肖像等版权问题,是无法大规模普及并商用的。所以,虽然明星译制片带火了HeyGen,但HeyGen想要将产品投放市场并发挥价值,还需要更有说服力的产品力。

从HeyGen官网可以看到,数字人+跨语言翻译视频,才是HeyGen的核心产品力,并给出了跨境电商营销视频、跨语种品牌宣传、老师制作教学视频、社交媒体吸粉、为生日婚礼等纪念日制作令人难忘的个人视频等,一系列落地场景。

在此基础上,HeyGen让数字人跨语言翻译视频,可以通过自动化流水线来制作。

用户可以上传自己的照片,进行个性化形象定制,也可以在HeyGen提供的数字人素材和模板中选择,输入脚本后就能生成自己所需的多语种视频了。

a583bb78db44e115bc5879796c792fc1.png

至此, HeyGen顺利完成了AI译制产品化的转换,从而取得了巨大的成功,导致了“多年译制无人问,一朝HeyGen天下知”的景况。

从AI写真到AI译制片的爆火,一次次说明,产品化是承上启下、不可或缺的一步,再怎么强调也不为过。

可以肯定地说,不能完成从技术到原型设计再到产品化的转换,将是许多大模型投资回报率低的主要原因,也是许多AI创业项目失败的原因之一。

78b822feca632c4030d964f2e777d30b.png

难逃“速朽”命运

商业化的魔咒

然而,即便如此成功的产品化,HeyGen又一次重复了“妙鸭”前辈的故事,在访问量陡增之后,又很快在各大群里销声匿迹了。

公域流量的退潮,似乎是爆款AIGC应用的共同命运。

对此,有人认为,HeyGen是在“闷声发大财”。虽然猎奇玩家散去了,但留下来的用户还是给HeyGen贡献了收入增长,HeyGen连续九个月环比增长率在50%以上。创始人Joshua Xu也在社交媒体上公布了相关数据,仅七个月时间,ARR年度经常性收入就达到了100万美元。

问题来了,HeyGen的商业化潜力是可持续的吗?

382df252f4769d93e08a9eb06953c9ed.png

我们认为,HeyGen将要面临的商业化挑战,还是非常大的。

首先,技术工具无法被垄断,仅靠多模态AI无法建立商业模式。

HeyGen凭借大模型强大的多模态和理解能力,让跨语种翻译视频制作,达到了传统AI译制所望尘莫及的水平,这是非常厉害的工作。但大模型就像c++、数据库一样,只是一种新技术工具,它是无法被垄断的。HeyGen所使用的开源工具极易获得,闭源模型API也敞开了迎客,所以仅靠底层工具无法建立商业模式和竞争壁垒。

而产品创意、交互界面的开发门槛并不高,大量科技企业和个人开发者都可以轻松复刻并优化升级,产品被超越或许只在旦夕之间。

如今点开海外科技媒体的报道页面,会看到类似HeyGen(原movio)的视频生成工具,推荐清单高达95个之多。可以说,HeyGen提供了一个宝贵的AIGC用例,但很快就开启了一场白热化竞争,这对其后续收入的持续增长是很大的威胁。

a11e63eed05d610048ea06a72ae44af9.png

其次,C端付费刚性,B端行业壁垒深,收入增长曲线会放缓。

目前,HeyGen收入主要靠C端客户付费。免费版本只支持一个免费的credits字幕,显然仅供玩票,而最低的创作者(Creator)付费档也要24美元/月,对于个人博主来说虽然不算太贵,但随着一大堆同质化产品的价格“内卷”,未来也会面临性价比不高的窘况。

eba223f035aff0d8b26619e4d6d86920.png

而商业用户(business)虽然付费能力强、价格接受度高,但对跨语言视频翻译的技术含金量则要求更为复杂。HeyGen商业版本的客户,大多是制作电商营销广告、语言学习数字人、多语种新闻播报、译制片等,对翻译质量就会提出更为细粒度的要求,比如文本翻译的长度,要尽量和目标语言接近,来保持说话口型的一致性。还有,不同人说话的韵律不一样,停顿的位置、重音的位置都要对齐,才能高度还原个人风格。

再比如,老人、小孩说同一个文本时,因为角色人设的不同,遣词造句也应该不一样,翻译后的文本、语音都需要跟人设相对齐。

还有很多文化细节,是跨语种翻译中要进行强把控的,很多还是要人工译者去完成。毕竟商用场景不同于娱乐场景,跨语言容易产生歧义,一旦出现1%的错误,都可能让做对的99%工作打了水漂,面临丢单甚至海外市场合规风险。

所以说,商业用户需要复杂、高质量、高控制的产品。这就需要厂商在数据方面,尤其是小语种等少样本数据,有独家的、高质量的数据积累。模型训练,强行业知识等,都要长期积累和迭代,达到专业译者的水平。

目前,已经有AI公司针对精品化视频译制的需求,推出了ToB的产品解决方案,训练跨语种 Voice Conversion模型,采集配音演员的口型,由人工控制,再经由VC模型生成配音结果,比TTS模型的表现力更强,细节保留更多。

目前国内的AI巨头都很重视B端市场,资源充足,并且在机器翻译TTS、多模态AI技术方面的积累深厚,都可能是HeyGen商业用户的争夺者。

大模型的产品创新风口,才刚刚开始,要保持商业化的优势身位,如逆水行舟,“当红顶流”也不能掉以轻心。

爆款应用“速生速朽”

大模型的商业迷思

879f1fee5ed5ae999eec99a40cddde1c.png

2022年11月30日,ChatGPT问世,在一周年刚刚过去之际,这场大语言模型的热潮,将所有人都席卷其中。或许还有人无知无觉,但也注定无法置身事外。

一年以来,时常有妙鸭相机、HeyGen这样的爆款应用,在社交媒体刷屏。这证明了几件事:

1.大模型是条件,而不是结果。运用好这些新工具,创造新产品的人,会获得新时代里无限多的机会。

2.基建是问题,但也不是问题。提到大模型,业界总会担忧算力卡被限制,国产大模型能力有差距,但悲观者正确,乐观者前行。实际上,无论算力基建、开发工具、基座模型,在今天都不是,也不该是应用开发者的阻碍。

业内有人说过,国产卡只要达到N卡60%的性能,用户就会买单。而一些开发者告诉我,密集使用了文心一言、讯飞星火等国产大模型,基础逻辑推理确实能叫板GPT 3.5-turbo,非基础能力比如func call、稳定性等也可圈可点。而妙鸭、HeyGen也都是中国企业所开发的,行动比洞见更重要。

3.产品化,是大模型商业化的必要条件。做了那么多通用大模型和行业大模型,如果没有大量产品化的成果,是无法转化为使用价值和经济效益的。“改变世界”的不是大模型,而是各种各样的产品,无数个HeyGen,帮助开发者完成从原型设计到产品化的转换,降低试错成本,将是接下来大模型厂商最重要的动作。

4.建立商业壁垒的,是刚需场景+强业务知识/数据+软件工程。HeyGen的商业化挑战,说明大模型不是壁垒,产品也不是壁垒,这些都是很容易被复制的。而行业知识/数据,大规模软件工程的流程控制、降本增效,可以针对特定场景的需求深入挖掘、快速开发、快速迭代优化,才符合AI技术特性,才是商业化的保障。

几位行业大模型应用的开发者,不约而同地跟我说过一件事:先找到场景,再优化产品和服务。也就是先想好商业变现的路线,确定自己的壁垒达到了,再去扎扎实实做产品,心里才能不慌。

比如一个ToC的民宿大模型,解决的是旅客入住民宿时,管家介入太深显得没有边界感,过度打扰;管家介入太浅,又缺乏服务价值感,无法及时解决问题。基于大模型的语音交互助手,就在旅客和管家之间,起到了很好的缓冲桥梁作用,让服务恰到好处。而旅客在当地的餐饮、游玩、购物等活动,也都是围绕“住”展开的,通过民宿大模型提供优质可靠的推荐服务,也带来了商业转换的潜力。

一个ToB的金融大模型应用开发者也表示,企业机构内部的多样化需求,是不可能由一个通用的、标准化的软件产品来承载的,所以ToB大模型创业,既要做业务分析咨询,又要做软件开发写代码,才能真正服务好客户。AI软件开发的流程化、自动化,对于控制成本非常重要,不能每个项目都靠一群博士“手搓”代码。

05bd1d3e92cae906121abb03de4e69a7.png

对商业和场景的深刻洞察,对行业和客户的理解,比掌握算法、掌握技术都要难得多,也是开发者最应该重视的核心能力。

最后我想说,虽然大模型已经非常火了,但别急着担心“泡沫”、害怕“追高”,这才是开始。

国际咨询机构的调查报告显示,65%的受访者目前有时或很少使用生成式人工智能,而约占90%的受访者认为,AI应该被“经常或总是”使用。

也就是说,大众对机器学习和生成式 AI(Gen AI)的接受度很高,而实际渗透率并不高。妙鸭、HeyGen等现象级Gen AI产品,无疑迈出了一大步,而只有它们,是远远不够的。

爆款AIGC应用,只是AI和大模型价值潜力的一小部分。目前还没有一种商业模式长期跑通,恰恰说明技术的新大陆上,留给登陆者、建设者们的发挥空间还很大。

8e2c9565c9ce8589ca6f5d21c29cf242.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1280886.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DLL缺失

DLL缺失 参考链接: 方法五,亲测有用

Android 源码编译

一,虚拟机安装 ​ 1.1 进入https://cn.ubuntu.com/download中文官网下载iso镜像 1.2 这里我们下载Ubuntu 18.04 LTS 1.3虚拟VM机安装ubuntu系统,注意编译源码需要至少16G运行内存和400G磁盘空间,尽量设大点 二 配置编译环境 2.1 下载andr…

使用VC++设计程序实现K近邻中值滤波器(KNNMF)、最小均方差滤波器、矢量中值滤波算法进行滤波

VC实现若干种图像滤波技术2 获取源工程可访问gitee可在此工程的基础上进行学习。 该工程的其他文章: 01- 一元熵值、二维熵值 02- 图像平移变换,图像缩放、图像裁剪、图像对角线镜像以及图像的旋转 03-邻域平均平滑算法、中值滤波算法、K近邻均值滤波器 …

页面表格高度自适应

前言 现在后端管理系统主页面基本都是由三部分组成 查询条件,高度不固定,可能有的页面查询条件多,有的少表格,高度不固定,占据页面剩余高度分页,高度固定 这三部分加起来肯定是占满全屏的,那么我…

openEuler学习05-ssh升级到openssh-9.5p1

openEuler的版本是openEuler 20.03,ssh的版本是OpenSSH_8.2p1 [roottest ~]# more /etc/os-release NAME"openEuler" VERSION"20.03 (LTS-SP3)" ID"openEuler" VERSION_ID"20.03" PRETTY_NAME"openEuler 20.03 (LTS-…

Python安装步骤介绍

本文将介绍Python安装的详细步骤如下: 下载 python安装 python配置环境变量(安装时勾选配置环境变量的则无需此步骤) 一、python下载 官网:Download Python | Python.org 根据电脑位数下载所需的版本 二、Python安装 1.打开安…

基于深度学习面向中医诊断的舌象图像分割系统

1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 研究背景与意义 中医舌诊是通过观察舌的各种特征来了解人体的健康状况,从而对各种疾病做出诊断及病情评估,是传统中国医学应用最广、最有价值的诊法之一。…

[C/C++]数据结构 关于二叉树的OJ题(利用分治思想解决难题)

题目一: 单值二叉树 🚩⛲🌟⚡🥦💬 🚩题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 ⛲题目描述: 如果二叉树每个节点都具有相同的值,那么该二叉树就是单值二叉树。…

每日一题:LeetCode-209. 长度最小的子数组(滑动窗口)

每日一题系列(day 11) 前言: 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 &#x1f50e…

一文弄懂BFS【广度优先搜索(Breadth-First Search)】

BFS,全名为广度优先搜索(Breadth-First Search),是一种用于图或树的遍历或搜索的算法。它的主要思想是由节点自身开始向它的邻居节点新进展开搜索,因此也常被形象地称为“层序遍历”。 BFS 基本思想 BFS 工作原理是,从开始节点开…

shell命令编写

1. 1 #!/bin/bash 2 3 directory_path"/txh"4 5 # 使用 find 命令查找指定路径下的文件,并使用 wc 命令统计行数(即文件个数)6 7 file_count$(find "directory_path" -type f | wc -l)8 9 10 echo "在路径$director…

Wireshark 协议插件Lua开发 -数据包内嵌协议的解释

概述 因为公司项目涉及的协议打包,协议包内又嵌了一层IP包的奇葩套娃结构,为了方便抓包调试,利用Wireshark的协议插件开发功能,写了一个插件,博文记录以备忘。 环境信息 Wireshark 4.0.3 协议结构体套娃图 插件安装…

Prime 1.0

信息收集 存活主机探测 arp-scan -l 或者利用nmap nmap -sT --min-rate 10000 192.168.217.133 -oA ./hosts 可以看到存活主机IP地址为:192.168.217.134 端口探测 nmap -sT -p- 192.168.217.134 -oA ./ports UDP端口探测 详细服务等信息探测 开放端口22&#x…

轻盈悦耳的运动型气传导耳机,还有条夜跑灯,哈氪聆光体验

我平时出门不管是散步、骑行,还是坐公交的时候,都喜欢戴上耳机听音乐,这可以让我放松心情。现在市面上的耳机还是以真无线为主,选择虽多,但不适合户外使用,听不见外界的声音,运动时还容易脱落&a…

软件工程单选多选补充

2. 4. 5. 6. 7. 8. 9. 10. 12。 13.

软件设计模式原则(三)单一职责原则

单一职责原则(SRP)又称单一功能原则。它规定一个类应该只有一个发生变化的原因。所谓职责是指类变化的原因。如果一个类有多于一个的动机被改变,那么这个类就具有多于一个的职责。而单一职责原则就是指一个类或者模块应该有且只有一个改变的原…

锁表的原因及解决办法

引言 作为开发人员,我们经常会和数据库打交道。 当我们对数据库进行修改操作的时候,例如添加字段,更新记录等,没有正确评估该表在这一时刻的使用频率,直接进行修改,致使修改操作长时间无法响应&#xff0…

【【Micro Blaze 的 最后补充 与 回顾 】】

Micro Blaze 的 最后补充 与 回顾 Micro Blaze 最小系统 以 MicroBlaze 为核心、LocalMemory(片上存储)为内存,加上传输信息使用的 UART串口就构成了嵌入式最小系统。当程序比较简单时,Local Memory 可以作为程序的运行空间以及…

OCR原理解析

目录 1.概述 2.应用场景 3.发展历史 4.基于传统算法的OCR技术原理 4.1 图像预处理 4.1.1 灰度化 4.1.2 二值化 4.1.3 去噪 4.1.4 倾斜检测与校正 4.1.4.2 轮廓矫正 4.1.5 透视矫正 4.2 版面分析 4.2.1 连通域检测文本 4.2.2 MSER检测文本 4.3 字符切割 4.3.1 连…

Excel 分列功能

一. 需求 ⏹有一段文本,文本一共有7列。这7列文本之间的分隔符不相同 有一个空格的有多个空格的有Tab的jmw_state 和 method 之间用 & 连接 现在要求,将这段文本粘贴到Excel中,进行分列。并且需要将 jmw_state 和 method 也进行分列 也…