基于英特尔平台及OpenVINO2023工具套件优化文生图任务

news2025/1/17 14:12:37

当今,文生图技术在很多领域都得到了广泛的应用。这种技术可以将文本直接转换为逼真的图像,具有很高的实用性和应用前景。然而,由于文生成图任务通常需要大量的计算资源和时间,如何在英特尔平台上高效地完成这些计算是一个重要的挑战。

为了解决这个问题,我们主要使用最优的调度器等方法来优化文生成图任务的计算过程。调度器是一种优化工具,它可以将任务分配到不同的计算节点上,并根据实际情况调整计算节点的负载和使用率,以提高整体的计算效率和性能。

赛题任务:使用stable diffusion2.1在目标英特尔硬件上完成部署优化以及指定图片生成工作。
操作系统:Windows11
硬件平台:使用大赛提供的标准硬件
目标:根据指定的输入输出要求,优化指定文生图模型在端侧设备上的Pipeline性能,在保证文生图效果的情况下,降低pipeline端到端延迟,降低pipeline峰值内存占用。
在这里插入图片描述
输入输出要求:
1.Prompt输入:“a photo of an astronaut riding a horse on mars”
2.Negative Prompt输入: “low resolution, blurry”
3.图片输出: 512*512, 24Bit, PNG格式
在这里插入图片描述

一、导入模型和相关配置

from diffusers import StableDiffusionPipeline
from pathlib import Path
pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-2-1-base").to("cpu")

# for reducing memory consumption get all components from pipeline independently
text_encoder = pipe.text_encoder
text_encoder.eval()
unet = pipe.unet
unet.eval()
vae = pipe.vae
vae.eval()

conf = pipe.scheduler.config

del pipe

sd2_1_model_dir = Path("sd2.1")
sd2_1_model_dir.mkdir(exist_ok=True)

二、转换Encoder为IR格式

import gc
import torch
import openvino as ov

TEXT_ENCODER_OV_PATH = sd2_1_model_dir / 'text_encoder.xml'


def cleanup_torchscript_cache():
    """
    Helper for removing cached model representation
    """
    torch._C._jit_clear_class_registry()
    torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
    torch.jit._state._clear_class_state()


def convert_encoder(text_encoder: torch.nn.Module, ir_path:Path):
    """
    Convert Text Encoder model to IR. 
    Function accepts pipeline, prepares example inputs for conversion 
    Parameters: 
        text_encoder (torch.nn.Module): text encoder PyTorch model
        ir_path (Path): File for storing model
    Returns:
        None
    """
    if not ir_path.exists():
        input_ids = torch.ones((1, 77), dtype=torch.long)
        # switch model to inference mode
        text_encoder.eval()

        # disable gradients calculation for reducing memory consumption
        with torch.no_grad():
            # export model
            ov_model = ov.convert_model(
                text_encoder,  # model instance
                example_input=input_ids,  # example inputs for model tracing
                input=([1,77],)  # input shape for conversion
            )
            ov.save_model(ov_model, ir_path)
            del ov_model
            cleanup_torchscript_cache()
        print('Text Encoder successfully converted to IR')

if not TEXT_ENCODER_OV_PATH.exists():
    convert_encoder(text_encoder, TEXT_ENCODER_OV_PATH)
else:
    print(f"Text encoder will be loaded from {TEXT_ENCODER_OV_PATH}")

del text_encoder
gc.collect();

三、转换Unet为IR格式

import numpy as np

UNET_OV_PATH = sd2_1_model_dir / 'unet.xml'


def convert_unet(unet:torch.nn.Module, ir_path:Path, num_channels:int = 4, width:int = 64, height:int = 64):
    """
    Convert Unet model to IR format. 
    Function accepts pipeline, prepares example inputs for conversion 
    Parameters: 
        unet (torch.nn.Module): UNet PyTorch model
        ir_path (Path): File for storing model
        num_channels (int, optional, 4): number of input channels
        width (int, optional, 64): input width
        height (int, optional, 64): input height
    Returns:
        None
    """
    dtype_mapping = {
        torch.float32: ov.Type.f32,
        torch.float64: ov.Type.f64
    }
    if not ir_path.exists():
        # prepare inputs
        encoder_hidden_state = torch.ones((2, 77, 1024))
        latents_shape = (2, num_channels, width, height)
        latents = torch.randn(latents_shape)
        t = torch.from_numpy(np.array(1, dtype=np.float32))
        unet.eval()
        dummy_inputs = (latents, t, encoder_hidden_state)
        input_info = []
        for input_tensor in dummy_inputs:
            shape = ov.PartialShape(tuple(input_tensor.shape))
            element_type = dtype_mapping[input_tensor.dtype]
            input_info.append((shape, element_type))

        with torch.no_grad():
            ov_model = ov.convert_model(
                unet, 
                example_input=dummy_inputs,
                input=input_info
            )
        ov.save_model(ov_model, ir_path)
        del ov_model
        cleanup_torchscript_cache()
        print('U-Net successfully converted to IR')


if not UNET_OV_PATH.exists():
    convert_unet(unet, UNET_OV_PATH, width=96, height=96)
    del unet
    gc.collect()
else:
    del unet
gc.collect();

四、转换Vae为IR格式

VAE_ENCODER_OV_PATH = sd2_1_model_dir / 'vae_encoder.xml'


def convert_vae_encoder(vae: torch.nn.Module, ir_path: Path, width:int = 512, height:int = 512):
    """
    Convert VAE model to IR format. 
    VAE model, creates wrapper class for export only necessary for inference part, 
    prepares example inputs for onversion 
    Parameters: 
        vae (torch.nn.Module): VAE PyTorch model
        ir_path (Path): File for storing model
        width (int, optional, 512): input width
        height (int, optional, 512): input height
    Returns:
        None
    """
    class VAEEncoderWrapper(torch.nn.Module):
        def __init__(self, vae):
            super().__init__()
            self.vae = vae

        def forward(self, image):
            return self.vae.encode(x=image)["latent_dist"].sample()

    if not ir_path.exists():
        vae_encoder = VAEEncoderWrapper(vae)
        vae_encoder.eval()
        image = torch.zeros((1, 3, width, height))
        with torch.no_grad():
            ov_model = ov.convert_model(vae_encoder, example_input=image, input=([1,3, width, height],))
        ov.save_model(ov_model, ir_path)
        del ov_model
        cleanup_torchscript_cache()
        print('VAE encoder successfully converted to IR')


def convert_vae_decoder(vae: torch.nn.Module, ir_path: Path, width:int = 64, height:int = 64):
    """
    Convert VAE decoder model to IR format. 
    Function accepts VAE model, creates wrapper class for export only necessary for inference part, 
    prepares example inputs for conversion 
    Parameters: 
        vae (torch.nn.Module): VAE model 
        ir_path (Path): File for storing model
        width (int, optional, 64): input width
        height (int, optional, 64): input height
    Returns:
        None
    """
    class VAEDecoderWrapper(torch.nn.Module):
        def __init__(self, vae):
            super().__init__()
            self.vae = vae

        def forward(self, latents):
            return self.vae.decode(latents)

    if not ir_path.exists():
        vae_decoder = VAEDecoderWrapper(vae)
        latents = torch.zeros((1, 4, width, height))

        vae_decoder.eval()
        with torch.no_grad():
            ov_model = ov.convert_model(vae_decoder, example_input=latents, input=([1,4, width, height],))
        ov.save_model(ov_model, ir_path)
        del ov_model
        cleanup_torchscript_cache()
        print('VAE decoder successfully converted to IR')

if not VAE_ENCODER_OV_PATH.exists():
    convert_vae_encoder(vae, VAE_ENCODER_OV_PATH, 768, 768)
else:
    print(f"VAE encoder will be loaded from {VAE_ENCODER_OV_PATH}")

VAE_DECODER_OV_PATH = sd2_1_model_dir / 'vae_decoder.xml'

if not VAE_DECODER_OV_PATH.exists():
    convert_vae_decoder(vae, VAE_DECODER_OV_PATH, 96, 96)
else:
    print(f"VAE decoder will be loaded from {VAE_DECODER_OV_PATH}")

del vae
gc.collect();

五、核心代码

import inspect
from typing import List, Optional, Union, Dict

import PIL
import cv2
import torch

from transformers import CLIPTokenizer
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler


def scale_fit_to_window(dst_width:int, dst_height:int, image_width:int, image_height:int):
    """
    Preprocessing helper function for calculating image size for resize with peserving original aspect ratio 
    and fitting image to specific window size
    
    Parameters:
      dst_width (int): destination window width
      dst_height (int): destination window height
      image_width (int): source image width
      image_height (int): source image height
    Returns:
      result_width (int): calculated width for resize
      result_height (int): calculated height for resize
    """
    im_scale = min(dst_height / image_height, dst_width / image_width)
    return int(im_scale * image_width), int(im_scale * image_height)


def preprocess(image: PIL.Image.Image):
    """
    Image preprocessing function. Takes image in PIL.Image format, resizes it to keep aspect ration and fits to model input window 512x512,
    then converts it to np.ndarray and adds padding with zeros on right or bottom side of image (depends from aspect ratio), after that
    converts data to float32 data type and change range of values from [0, 255] to [-1, 1], finally, converts data layout from planar NHWC to NCHW.
    The function returns preprocessed input tensor and padding size, which can be used in postprocessing.
    
    Parameters:
      image (PIL.Image.Image): input image
    Returns:
       image (np.ndarray): preprocessed image tensor
       meta (Dict): dictionary with preprocessing metadata info
    """
    src_width, src_height = image.size
    dst_width, dst_height = scale_fit_to_window(
        512, 512, src_width, src_height)
    image = np.array(image.resize((dst_width, dst_height),
                     resample=PIL.Image.Resampling.LANCZOS))[None, :]
    pad_width = 512 - dst_width
    pad_height = 512 - dst_height
    pad = ((0, 0), (0, pad_height), (0, pad_width), (0, 0))
    image = np.pad(image, pad, mode="constant")
    image = image.astype(np.float32) / 255.0
    image = 2.0 * image - 1.0
    image = image.transpose(0, 3, 1, 2)
    return image, {"padding": pad, "src_width": src_width, "src_height": src_height}


class OVStableDiffusionPipeline(DiffusionPipeline):
    def __init__(
        self,
        vae_decoder: ov.Model,
        text_encoder: ov.Model,
        tokenizer: CLIPTokenizer,
        unet: ov.Model,
        scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
        vae_encoder: ov.Model = None,
    ):
        """
        Pipeline for text-to-image generation using Stable Diffusion.
        Parameters:
            vae_decoder (Model):
                Variational Auto-Encoder (VAE) Model to decode images to and from latent representations.
            text_encoder (Model):
                Frozen text-encoder. Stable Diffusion uses the text portion of
                [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
                the clip-vit-large-patch14(https://huggingface.co/openai/clip-vit-large-patch14) variant.
            tokenizer (CLIPTokenizer):
                Tokenizer of class CLIPTokenizer(https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
            unet (Model): Conditional U-Net architecture to denoise the encoded image latents.
            vae_encoder (Model):
                Variational Auto-Encoder (VAE) Model to encode images to latent representation.
            scheduler (SchedulerMixin):
                A scheduler to be used in combination with unet to denoise the encoded image latents. Can be one of
                DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler.
        """
        super().__init__()
        self.scheduler = scheduler
        self.vae_decoder = vae_decoder
        self.vae_encoder = vae_encoder
        self.text_encoder = text_encoder
        self.unet = unet
        self._text_encoder_output = text_encoder.output(0)
        self._unet_output = unet.output(0)
        self._vae_d_output = vae_decoder.output(0)
        self._vae_e_output = vae_encoder.output(0) if vae_encoder is not None else None
        self.height = self.unet.input(0).shape[2] * 8
        self.width = self.unet.input(0).shape[3] * 8
        self.tokenizer = tokenizer

    def __call__(
        self,
        prompt: Union[str, List[str]],
        image: PIL.Image.Image = None,
        negative_prompt: Union[str, List[str]] = None,
        num_inference_steps: Optional[int] = 50,
        guidance_scale: Optional[float] = 7.5,
        eta: Optional[float] = 0.0,
        output_type: Optional[str] = "pil",
        seed: Optional[int] = None,
        strength: float = 1.0,
    ):
        """
        Function invoked when calling the pipeline for generation.
        Parameters:
            prompt (str or List[str]):
                The prompt or prompts to guide the image generation.
            image (PIL.Image.Image, *optional*, None):
                 Intinal image for generation.
            negative_prompt (str or List[str]):
                The negative prompt or prompts to guide the image generation.
            num_inference_steps (int, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (float, *optional*, defaults to 7.5):
                Guidance scale as defined in Classifier-Free Diffusion Guidance(https://arxiv.org/abs/2207.12598).
                guidance_scale is defined as `w` of equation 2.
                Higher guidance scale encourages to generate images that are closely linked to the text prompt,
                usually at the expense of lower image quality.
            eta (float, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [DDIMScheduler], will be ignored for others.
            output_type (`str`, *optional*, defaults to "pil"):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): PIL.Image.Image or np.array.
            seed (int, *optional*, None):
                Seed for random generator state initialization.
            strength (int, *optional*, 1.0):
                strength between initial image and generated in Image-to-Image pipeline, do not used in Text-to-Image
        Returns:
            Dictionary with keys: 
                sample - the last generated image PIL.Image.Image or np.array
        """
        if seed is not None:
            np.random.seed(seed)
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0
        # get prompt text embeddings
        text_embeddings = self._encode_prompt(prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt)
        # set timesteps
        accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
        extra_set_kwargs = {}
        if accepts_offset:
            extra_set_kwargs["offset"] = 1

        self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
        latent_timestep = timesteps[:1]

        # get the initial random noise unless the user supplied it
        latents, meta = self.prepare_latents(image, latent_timestep)

        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]
        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        for t in self.progress_bar(timesteps):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            # predict the noise residual
            noise_pred = self.unet([latent_model_input, np.array(t, dtype=np.float32), text_embeddings])[self._unet_output]
            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1]
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs)["prev_sample"].numpy()
        # scale and decode the image latents with vae
        image = self.vae_decoder(latents * (1 / 0.18215))[self._vae_d_output]

        image = self.postprocess_image(image, meta, output_type)
        return {"sample": image}

    def _encode_prompt(self, prompt:Union[str, List[str]], num_images_per_prompt:int = 1, do_classifier_free_guidance:bool = True, negative_prompt:Union[str, List[str]] = None):
        """
        Encodes the prompt into text encoder hidden states.

        Parameters:
            prompt (str or list(str)): prompt to be encoded
            num_images_per_prompt (int): number of images that should be generated per prompt
            do_classifier_free_guidance (bool): whether to use classifier free guidance or not
            negative_prompt (str or list(str)): negative prompt to be encoded
        Returns:
            text_embeddings (np.ndarray): text encoder hidden states
        """
        batch_size = len(prompt) if isinstance(prompt, list) else 1

        # tokenize input prompts
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids

        text_embeddings = self.text_encoder(
            text_input_ids)[self._text_encoder_output]

        # duplicate text embeddings for each generation per prompt
        if num_images_per_prompt != 1:
            bs_embed, seq_len, _ = text_embeddings.shape
            text_embeddings = np.tile(
                text_embeddings, (1, num_images_per_prompt, 1))
            text_embeddings = np.reshape(
                text_embeddings, (bs_embed * num_images_per_prompt, seq_len, -1))

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
            uncond_tokens: List[str]
            max_length = text_input_ids.shape[-1]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            else:
                uncond_tokens = negative_prompt
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="np",
            )

            uncond_embeddings = self.text_encoder(uncond_input.input_ids)[self._text_encoder_output]

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = uncond_embeddings.shape[1]
            uncond_embeddings = np.tile(uncond_embeddings, (1, num_images_per_prompt, 1))
            uncond_embeddings = np.reshape(uncond_embeddings, (batch_size * num_images_per_prompt, seq_len, -1))

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])

        return text_embeddings

    def prepare_latents(self, image:PIL.Image.Image = None, latent_timestep:torch.Tensor = None):
        """
        Function for getting initial latents for starting generation
        
        Parameters:
            image (PIL.Image.Image, *optional*, None):
                Input image for generation, if not provided randon noise will be used as starting point
            latent_timestep (torch.Tensor, *optional*, None):
                Predicted by scheduler initial step for image generation, required for latent image mixing with nosie
        Returns:
            latents (np.ndarray):
                Image encoded in latent space
        """
        latents_shape = (1, 4, self.height // 8, self.width // 8)
        noise = np.random.randn(*latents_shape).astype(np.float32)
        if image is None:
            # if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas
            if isinstance(self.scheduler, LMSDiscreteScheduler):
                noise = noise * self.scheduler.sigmas[0].numpy()
            return noise, {}
        input_image, meta = preprocess(image)
        latents = self.vae_encoder(input_image)[self._vae_e_output]
        latents = latents * 0.18215
        latents = self.scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy()
        return latents, meta

    def postprocess_image(self, image:np.ndarray, meta:Dict, output_type:str = "pil"):
        """
        Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initila image size (if required), 
        normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format
        
        Parameters:
            image (np.ndarray):
                Generated image
            meta (Dict):
                Metadata obtained on latents preparing step, can be empty
            output_type (str, *optional*, pil):
                Output format for result, can be pil or numpy
        Returns:
            image (List of np.ndarray or PIL.Image.Image):
                Postprocessed images
        """
        if "padding" in meta:
            pad = meta["padding"]
            (_, end_h), (_, end_w) = pad[1:3]
            h, w = image.shape[2:]
            unpad_h = h - end_h
            unpad_w = w - end_w
            image = image[:, :, :unpad_h, :unpad_w]
        image = np.clip(image / 2 + 0.5, 0, 1)
        image = np.transpose(image, (0, 2, 3, 1))
        # 9. Convert to PIL
        if output_type == "pil":
            image = self.numpy_to_pil(image)
            if "src_height" in meta:
                orig_height, orig_width = meta["src_height"], meta["src_width"]
                image = [img.resize((orig_width, orig_height),
                                    PIL.Image.Resampling.LANCZOS) for img in image]
        else:
            if "src_height" in meta:
                orig_height, orig_width = meta["src_height"], meta["src_width"]
                image = [cv2.resize(img, (orig_width, orig_width))
                         for img in image]
        return image

    def get_timesteps(self, num_inference_steps:int, strength:float):
        """
        Helper function for getting scheduler timesteps for generation
        In case of image-to-image generation, it updates number of steps according to strength
        
        Parameters:
           num_inference_steps (int):
              number of inference steps for generation
           strength (float):
               value between 0.0 and 1.0, that controls the amount of noise that is added to the input image. 
               Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.
        """
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start:]

        return timesteps, num_inference_steps - t_start 

六、构建ov_pipe

import ipywidgets as widgets
from transformers import CLIPTokenizer

core = ov.Core()

device = 'GPU.1'

ov_config = {"INFERENCE_PRECISION_HINT": "f32"} if device != "CPU" else {}

text_enc = core.compile_model(TEXT_ENCODER_OV_PATH, device)
unet_model = core.compile_model(UNET_OV_PATH, device)
vae_decoder = core.compile_model(VAE_DECODER_OV_PATH, device, ov_config)
vae_encoder = core.compile_model(VAE_ENCODER_OV_PATH, device, ov_config)

scheduler = DPMSolverMultistepScheduler.from_config(conf)
tokenizer = CLIPTokenizer.from_pretrained('clip-vit-large-patch14')

ov_pipe = OVStableDiffusionPipeline(
    tokenizer=tokenizer,
    text_encoder=text_enc,
    unet=unet_model,
    vae_encoder=vae_encoder,
    vae_decoder=vae_decoder,
    scheduler=scheduler
)

七、开始推理

import os  
from PIL import Image  
  
def generate(prompt, negative_prompt, seed, num_steps):  
    result = ov_pipe(  
        prompt,  
        negative_prompt=negative_prompt,  
        num_inference_steps=int(num_steps),  
        seed=seed,  
    )  
    return result["sample"][0]  
  
def save_image(image, file_path):  
    # 确保目录存在  
    os.makedirs(os.path.dirname(file_path), exist_ok=True)  
      
    # 保存图像  
    image.save(file_path, format="PNG", optimize=True)  
  
def generate_and_save_images(prompt, negative_prompt, seed, num_steps, image_dir):  
    for i in range(20):  
        image = generate(prompt, negative_prompt, seed + i, num_steps)  
        image = image.resize((512, 512))  # 调整图像大小为512x512像素  
          
        # 保存图片到文件  
        file_path = os.path.join(image_dir, f"image_{i}.png")  
        save_image(image, file_path)  
  
# 使用函数生成图片  
prompt = "a photo of an astronaut riding a horse on mars"
negative_prompt = "low resolution, blurry"
num_inference_steps = "25"
seed = "42"
output_dir = "output_images"
generate_and_save_images(prompt , negative_prompt , seed , num_inference_steps , output_dir )

推理过程如下:
在这里插入图片描述
推理结果保存在对应output_dir路径下:
在这里插入图片描述
推理个例如下:
在这里插入图片描述

八、优化

首先,我们基于英特尔的独立显卡GPU.1硬件进行SD文生图模型的部署,这在一定程度上已经相比其它硬件平台有了一定的优化,然后,我们基于SD模型的调度器进行了替换优化。

原先模型使用的调度器主要为LMSDiscreteScheduler,由于不同的调度器往往有不一定的推理效果,所以我针对各种优化器进行了对比,其中主要有DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler、DPMSolverMultistepScheduler以及FlaxLMSDiscreteScheduler。

其中DPMSolverMultistep是DPM-Solver: 10步左右扩散概率模型采样快速ODE求解器和DPM-Solver++:扩散概率模型引导采样快速求解器的多步调度程序,由陆成、周宇浩、包凡、陈建飞、李冲轩、朱军等人提出。

DPMSolver(及其改进版本DPMSolver++)是一种快速的、具有收敛阶保证的扩散ode专用高阶求解器。从经验上看,DPMSolver采样只需要20步就可以生成高质量的样本,即使是10步也可以生成相当好的样本。

最后通过综合比对,我们发现DPMSolver不仅出图速度相较于其它调度器较快,出图的质量也很高,最后采用了该调度器进行SD文升图的优化。

内存占有率也是限制在11.8到12.2左右。
在这里插入图片描述
同时,基本也是5秒一张图。

生成的图片格式也符合要求:

在这里插入图片描述
而使用其它优化器的内存占有率高达16GB左右。
在这里插入图片描述
文升图推理速度也是高达15s左右。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1280821.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于Java SSM框架+Vue实现企业公寓后勤管理系统项目【项目源码+论文说明】

基于java的SSM框架Vue实现企业宿舍后勤管理网站演示 摘要 21世纪的今天,随着社会的不断发展与进步,人们对于信息科学化的认识,已由低层次向高层次发展,由原来的感性认识向理性认识提高,管理工作的重要性已逐渐被人们所…

RC低通滤波电路直接带载后会发生什么?

1、滤波的含义 滤波是频域范畴,它说的是不同频率的信号经过一个电路处理后,信号发生变化的问题,变化包含了原始信号幅值和相位的变化,滤波电路对信号的幅值做出的响应称为幅频响应,对信号相位做出的反应称为相频响应。…

【MySQL】视图 + 用户管理

视图 前言正式开始视图用户管理user表创建新用户修改用户密码权限管理给用户赋权剥夺权限 前言 本篇所讲的视图和我上一篇事务中所讲的读视图不是一个东西,二者没有任何关系,如果看过我前一篇博客的同学不要搞混了。 其实视图和用户管理本来是想着分开…

perl脚本批量处理代码中的中文注释乱码的问题

代码中统一使用utf-8编码是最好的,但是有一些多人合作的项目或者一些历史遗留代码,常见一些中文注释乱码的问题。这里以一个开源项目evpp为例子 evpp。以项目中的一个commit id为例: 477033f938fd47dfecde43c82257cd286d9fa38e , …

数据结构之堆排序以及Top-k问题详细解析

个人主页:点我进入主页 专栏分类:C语言初阶 C语言程序设计————KTV C语言小游戏 C语言进阶 C语言刷题 数据结构初阶 欢迎大家点赞,评论,收藏。 一起努力 目录 1.前言 2.堆排序 2.1降序排序 2.2时间复杂…

充电桩新老国标兼容性分析

1、背景介绍 1.1、充电桩相关标准发展历程 1.2、兼容性分析历史 1.3、兼容性分析的目的 1.4、兼容性分析的内容 2、B类协议兼容性分析 2.1、协议分层结构 2.2、链路层分析 2.3、版本协商与链路检测 ## 2.4、传输层分析 2.5、应用层 2.5.1、应用层数据 2.5.2、应用层数据…

谈谈MYSQL索引

基本介绍 索引是帮助MySQL高效获取数据的数据结构,主要是用来提高数据检索的效率,降低数据库的IO成本,同时通过索引列对数据进行排序,降低数据排序的成本,也能降低了CPU的消耗。 通俗来说, 索引就相当于一本书的目录,…

QML中常见布局方法

目录 引言常见方法锚定(anchors)定位器Row、ColumnGridFlow 布局管理器RowLayout、ColumnLayoutGridLayoutStackLayout 总结 引言 UI界面由诸多元素构成,如Label、Button、Input等等,各种元素需要按照一定规律进行排布才能提高界…

Java数据结构之《构造哈夫曼树》题目

一、前言: 这是怀化学院的:Java数据结构中的一道难度中等(偏难理解)的一道编程题(此方法为博主自己研究,问题基本解决,若有bug欢迎下方评论提出意见,我会第一时间改进代码,谢谢!) 后面其他编程题…

kgma转换flac格式、酷狗下载转换车载模式能听。

帮朋友下载几首歌到U盘里、发现kgma格式不能识别出来,这是酷狗加密过的格式,汽车不识别,需要转换成mp3或者flac格式,网上的一些辣鸡软件各种收费、限制、广告,后来发现一个宝藏网站,可以在线免费转换成flac…

长度最小的子数组(Java详解)

目录 题目描述 题解 思路分析 暴力枚举代码 滑动窗口代码 题目描述 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条…

MyBatis自动生成代码(扩展)

可以利用Mybatis-Generator来帮我们自动生成文件 1、自动生成实体类 可以帮助我们针对数据库中的每张表自动生成实体类 2、自动生成SQL映射文件 可以帮助我们针对每张表自动生成SQL配置文件,配置文件里已经定义好对于该表的增删改查的SQL以及映射 3、自动生成接…

数据层融合、特征层融合和决策层融合是三种常见的数据融合方式!!

文章目录 一、数据融合的方式有什么二、数据层融合三、特征层融合:四、决策层融合: 一、数据融合的方式有什么 数据层融合、特征层融合和决策层融合是三种常见的数据融合方式。 二、数据层融合 定义:数据层融合也称像素级融合,…

Chat-GPT原理

GPT原理 核心是基于Transformer 架构 英文原文: ​ Transformers are based on the “attention mechanism,” which allows the model to pay more attention to some inputs than others, regardless of where they show up in the input sequence. For exampl…

10 分钟解释 StyleGAN

一、说明 G在过去的几年里,生成对抗网络一直是生成内容的首选机器学习技术。看似神奇地将随机输入转换为高度详细的输出,它们已在生成图像、生成音乐甚至生成药物方面找到了应用。 StyleGAN是一种真正推动 GAN 最先进技术向前发展的 GAN 类型。当Karras …

6-13连接两个字符串

#include<stdio.h> int main(){int i0,j0;char s1[222],s2[333];printf("请输入第一个字符串&#xff1a;\n");gets(s1);//scanf("%s",s1);printf("请输入第二个字符串&#xff1a;\n");gets(s2);while(s1[i]!\0)i;while(s2[j]!\0)s1[i]s2…

python--自动化办公(Word)

python自动化办公之—Word python-docx库 1、安装python-docx库 pip install python-docx2、基本语法 1、打开文档 document Document() 2、加入标题 document.add_heading(总标题,0) document.add_heading(⼀级标题,1) document.add_heading(⼆级标题,2) 3、添加文本 para…

IdleStateHandler 心跳机制源码详解

优质博文&#xff1a;IT-BLOG-CN 一、心跳机制 Netty支持心跳机制&#xff0c;可以检测远程服务端是否存活或者活跃。心跳是在TCP长连接中&#xff0c;客户端和服务端定时向对方发送数据包通知对方自己还在线&#xff0c;保证连接的有效性的一种机制。在服务器和客户端之间一…

深度学习记录--梯度下降法

什么是梯度下降法&#xff1f; 梯度下降法是用来求解成本函数cost函数中使得J(w,b)函数值最小的参数(w,b) 梯度下降法的实现 通过对参数w,b的不断更新迭代&#xff0c;使J(w,b)的值趋于局部最小值或者全局最小值 如何进行更新&#xff1f; 以w为例&#xff1a;迭代公式 ww-…