【深度学习实验】图像处理(四):PIL——自定义图像数据增强操作(图像合成;图像融合(高斯掩码))

news2025/1/18 7:35:19

文章目录

  • 一、实验介绍
  • 二、实验环境
    • 1. 配置虚拟环境
    • 2. 库版本介绍
  • 三、实验内容
    • 0. 导入必要的库
    • 1. PIL基础操作
    • 2~4. 随机遮挡、随机擦除、线性混合
    • 5. 图像合成
      • 5.1 原理
      • 5.2 实现
      • 5.3 效果展示
    • 6. 图像融合
      • 6.1 原理
      • 6.2 实现
      • 6.3 效果展示

一、实验介绍

  在深度学习任务中,数据增强是提高模型泛化能力的关键步骤之一。通过对训练集进行变换和扩充,可以有效地增加数据量,引入样本之间的差异,使模型更好地适应不同的输入。
  本实验将继续实现自定义图像数据增强操作,具体包括图像合成(粘贴组合)、图像融合(创建高斯掩码融合两个图像)

二、实验环境

1. 配置虚拟环境

conda create -n Image python=3.9 
conda activate Image
conda install pillow numpy

2. 库版本介绍

软件包本实验版本
numpy1.21.5
python3.9.13
pillow9.2.0

三、实验内容

0. 导入必要的库

import numpy as np
from PIL import Image

1. PIL基础操作

【深度学习实验】图像处理(一):Python Imaging Library(PIL)库:图像读取、写入、复制、粘贴、几何变换、图像增强、图像滤波

【深度学习实验】图像处理(二):PIL 和 PyTorch(transforms)中的图像处理与随机图片增强

2~4. 随机遮挡、随机擦除、线性混合

【深度学习实验】图像处理(三):PIL——自定义图像数据增强操作(随机遮挡、擦除、线性混合)

5. 图像合成

5.1 原理

  1. 输入图像:

    • 图像1 \text{图像1} 图像1
      在这里插入图片描述
    • 图像2 \text{图像2} 图像2
      在这里插入图片描述
  2. 遮挡和选择:

    • 遮挡图像1中的区域 x x x
      • 随机选择要遮挡的图像1中的区域 x x x(引入了训练数据的变异性)
    • 从图像2中选择对应区域 y y y
      • 选择与图像1中被遮挡区域 x x x 相对应的图像2中的区域 y y y
  3. 粘贴:

    • y y y 粘贴到图像1中的 x x x 位置:
      • 将从图像2中选择的区域 y y y 粘贴到图像1中被遮挡的区域 x x x 的位置(模拟了一种图像混合的效果)
  4. 输出:

    • 返回增强后的图像1,其中现在包含了粘贴的区域 y y y

5.2 实现

class Combine(object):
    def __init__(self,x_start, y_start, x_end, y_end):
        self.x_start = x_start
        self.y_start = y_start
        self.x_end = x_end
        self.y_end = y_end

    def __call__(self, img1, img2):
        # Masking out a region x of image1
        img1_array = np.array(img1)
        img1_array[self.y_start:self.y_end, self.x_start:self.x_end] = 0
        img1_masked =  Image.fromarray(img1_array.astype('uint8')).convert('RGB')

        # Selecting a region y of the same as x from image2
        region_y = img2.crop((self.x_start, self.y_start, self.x_end, self.y_end))

        # Pasting region y on the location of x of image1
        img1_masked.paste(region_y, (self.x_start, self.y_start))

        return img1_masked

5.3 效果展示

img1 = Image.open('3.png').convert('RGB')
img2 = Image.open('2.png').convert('RGB')
combine = Combine(628, 128, 1012, 512)
img = combine(img1,img2)
img.save('./combine_image.png')

在这里插入图片描述

6. 图像融合

6.1 原理

  通过高斯核函数创建掩码,以在两个图像之间进行融合。

  1. 调整样本 x j x_j xj(2.jpg)的大小以匹配样本 x i x_i xi(1.jpg);
  2. x i x_i xi(或 x j x_j xj)内选择一个随机位置 C C C
  3. 使用二维标准高斯核函数创建掩码 G G G,确保其中心与位置 C C C 对齐,并且其大小与 x i x_i xi 相匹配;
  4. 使用 G G G 修改 x i x_i xi,并使用 1 − G 1-G 1G 修改 x j x_j xj
  5. 将得到的修改组合在一起,得到 x ^ \hat x x^
  6. 返回 x ^ \hat x x^

6.2 实现

class Gaussian(object):
    def __init__(self, sigma):
        # 混合参数
        self.sigma = sigma

    def __call__(self, img1, img2):
        # Choose a random position, labeled as $C$, within $x_i$ (or $x_j$)
        self.size = img1.shape[1], img1.shape[0]
        print(self.size)
        x = np.random.randint(0, img1.shape[1])
        y = np.random.randint(0, img1.shape[0])
        position_c = (x, y)
        print(position_c)

        # Create mask $G$ using a 2D standard Gaussian kernel function,
        # ensuring its center aligns with position $C$, and the size of $G$ matches that of $x_i$

        mask_g = self.gaussian_mask(position_c)
        # print(mask_g.shape)
        mask_g = np.expand_dims(mask_g, axis=2)
        mask_g = np.repeat(mask_g, 3, axis=2)
        # print(mask_g.shape)

        # Use $G$ to modify $x_i$ and use $1-G$ to modify $x_j$
        # Combine the resulting modifications together as $\hat x$
        hat_x = img1 * mask_g + img2 * (1 - mask_g)
        return hat_x

    def gaussian_mask(self, center):
        x, y = np.meshgrid(np.arange(0, self.size[0]), np.arange(0, self.size[1]))
        d = np.sqrt((x - center[0]) ** 2 + (y - center[1]) ** 2)
        gaussian_mask = np.exp(-(d ** 2 / (2.0 * self.sigma ** 2)))
        return gaussian_mask

6.3 效果展示

# Input two images, which are image1 (1.jpg) and image2 (2.jpg)
img1 = Image.open('2.png').convert('RGB')
img2 = Image.open('3.png').convert('RGB')
# Adjust the size of Sample $x_j$ (2.jpg) to match Sample $x_i$ (1.jpg)
img2 = img2.resize(img1.size, Image.Resampling.BICUBIC)
img1 = np.array(img1)
img2 = np.array(img2)
gaussian = Gaussian(300)
img = gaussian(img1,img2)
img = Image.fromarray(img.astype('uint8')).convert('RGB')
img.save('./gaussian_image.png')

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1280710.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++实现ATM取款机

C实现ATM取款机 代码:https://mbd.pub/o/bread/ZZeZk5Zp 1.任务描述 要求:设计一个程序,当输入给定的卡号和密码(初始卡号和密码为123456) 时,系统 能登录 ATM 取款机系统,用户可以按照以下规则进行: 查询…

bean依赖属性配置

bean依赖属性配置 文章目录 bean依赖属性配置 Data ConfigurationProperties(prefix "cartoon") public class CartoonProperties {private Cat cat;private Mouse mouse; }cartoon:cat:name: whatage: 5mouse:name: howage: 6这样的话,业务bean无需在读…

3、在链式存储结构上建立一棵二叉排序树。

3、在链式存储结构上建立一棵二叉排序树。 分析: (1)定义二叉排序树的结点。 (2)插入操作:在建立二叉排序树的过程中,需要一个插入操作,用于将新的元素插入到树中。 插入操作的核心思…

数据结构和算法-哈夫曼树以相关代码实现

文章目录 总览带权路径长度哈夫曼树的定义哈夫曼树的构造法1法2 哈夫曼编码英文字母频次总结实验内容: 哈夫曼树一、上机实验的问题和要求(需求分析):二、程序设计的基本思想,原理和算法描述:三、调试和运行…

54.多级缓存

目录 一、传统缓存的问题、多级缓存方案。 二、JVM进程缓存。 1)进程缓存和缓存。 2)导入商品案例。 1.安装MySQL 2.导入SQL 3.导入Demo工程 4.导入商品查询页面 3)初识Caffeine(就是在springboot学过的注解方式的cache&…

【数据结构高阶】AVL树

上期博客我们讲解了set/multiset/map/multimap的使用,下面我们来深入到底层,讲解其内部结构: 目录 一、AVL树的概念 二、AVL树的实现 2.1 节点的定义 2.2 数据的插入 2.2.1 平衡因子的调整 2.2.1.1 调整平衡因子的规律 2.2.2 子树的旋…

YOLOv5改进 | 添加ECA注意力机制 + 更换主干网络之ShuffleNetV2

前言:Hello大家好,我是小哥谈。本文给大家介绍一种轻量化部署改进方式,即在主干网络中添加ECA注意力机制和更换主干网络之ShuffleNetV2,希望大家学习之后,能够彻底理解其改进流程及方法~!🌈 目…

分享77个焦点幻灯JS特效,总有一款适合您

分享77个焦点幻灯JS特效,总有一款适合您 77个焦点幻灯JS特效下载链接:百度网盘 请输入提取码 提取码:6666 Python采集代码下载链接:采集代码.zip - 蓝奏云 学习知识费力气,收集整理更不易。知识付费甚欢喜&…

sourceTree的下载和安装

sourceTree的下载和安装 一、概述 SourceTree 是一款免费的 Git 和 Hg 客户端管理工具,支持 Git 项目的创建、克隆、提交、push、pull 和合并等操作。它拥有一个精美简洁的界面,大大简化了开发者与代码库之间的 Git 操作方式,这对于不熟悉 …

WebGL笔记:矩阵缩放的数学原理和实现

矩阵缩放的数学原理 和平移一样,以同样的原理,也可以理解缩放矩阵让向量OA基于原点进行缩放 x方向上缩放:sxy方向上缩放:syz方向上缩放:sz 最终得到向量OB 矩阵缩放的应用 比如我要让顶点在x轴向缩放2,y轴…

SCAU:分期还款(加强版)

分期还款(加强版) Time Limit:1000MS Memory Limit:65535K 题型: 编程题 语言: G;GCC;VC 描述 从银行贷款金额为d,准备每月还款额为p,月利率为r。请编写程序输入这三个数值,计算并输出多少个月能够还清贷款,输出时保留1位小…

java学习part32StringBuffer和StringBuilder

Java中的值传递和引用传递(详解) - 知乎 (zhihu.com) 146-常用类与基础API-StringBuffer与StringBuilder的源码分析、常用方法_哔哩哔哩_bilibili 1. 2.扩容机制 不够用:长度为 原长度*22;如果还不够,那么就扩容到目…

C++笔试训练day_1

文章目录 选择题编程题 选择题 编程题 #include <iostream> #include <algorithm> #include <vector>using namespace std;int main() {int n 0;cin >> n;vector<int> v;v.resize(3 * n);int x 0;for(int i 0; i < v.size(); i){cin >&…

ES-ELSER 如何在内网中离线导入ES官方的稀疏向量模型(国内网络环境下操作方法)

ES官方训练了稀疏向量模型&#xff0c;用来支持语义检索。&#xff08;目前该模型只支持英文&#xff09; 最好是以离线的方式安装。在线的方式&#xff0c;在国内下载也麻烦&#xff0c;下载速度也慢。还不如用离线的方式。对于一般的生产环境&#xff0c;基本上也是网络隔离的…

初识Linux:保姆级教学,让你一秒记住Linux中的常用指令!

文章目录 前言一、LInux的背景及发展史二、Linux下的基本指令1、ls指令2、pwd指令3、cd指令4、touch指令5、mkdir指令&#xff08;重要&#xff09;6、tree指令7、rmdir指令和rm指令&#xff08;重要&#xff09;8、man指令&#xff08;重要&#xff09;9、cp指令&#xff08;重…

[进程控制]模拟实现命令行解释器shell

文章目录 1.字符串切割函数2.chdir()接口3.模拟实现shell 1.字符串切割函数 2.chdir()接口 3.模拟实现shell 模拟实现的shell下删除: ctrlbackspace模拟实现下table/上下左右箭头无法使用[demo] #include <stdio.h> #include <stdlib.h> #include <string.h&g…

nodejs介绍

nodejs官网支持的各种库api https://nodejs.org/docs/latest-v21.x/api/http.html nodejs包括vp8引擎和内置的基本库如fs,path,http,querystring等&#xff0c;也可以用npm按转第三方库 npm是nodejs环境的包管理工具&#xff0c;可以为这个环境安装卸载各种包。 npm install pk…

Git Bash环境下用perl脚本获取uuid值

在Linux环境下&#xff0c;比如在ubuntu就直接有uuidgen命令直接获取uuid值。在Windows环境下常用的git bash中没有对应的命令&#xff0c;略有不便。这里用脚本写一个uuidgen&#xff0c;模拟Linux环境下的uuidgen命令。 #! /usr/bin/perl use v5.14; use Win32;sub uuidGen {…

frp 配置内网访问

frp介绍 frp 是一个开源、简洁易用、高性能的内网穿透软件&#xff0c;支持 tcp, udp, http, https 等协议。frp 项目官网是 https://github.com/fatedier/frp 下载地址&#xff1a; https://github.com/fatedier/frp/releases frp工作原理 服务端运行&#xff0c;监听一个…