C语言结构体详解(二)(能看懂文字就能明白系列)文章很长,慢慢品尝

news2025/1/21 18:48:10

在这里插入图片描述

系列文章目录

第一章
结构体的介绍和基本使用

🌟 个人主页:古德猫宁-

🌈 信念如阳光,照亮前行的每一步

文章目录

  • 系列文章目录
    • 🌈 *信念如阳光,照亮前行的每一步*
  • 前言
    • 前面一篇文章主要介绍了结构体的基础内容和使用,这篇接着讲述结构体的主要内容,例如计算结构体的大小,结构体的内存对齐规则,为什么存储结构体内存对齐,结构体如何传参
  • 一、对齐规则
  • 二、为什么存在内存对齐?
    • 1.平台原因(移植原因):
    • 2.性能原因:
  • 三、如何修改默认对齐数
  • 四、结构体传参
  • 结构体实现位段
    • 1、什么是位段
    • 2、位段的内存分配
    • 3、位段的跨平台问题
  • 总结


前言

前面一篇文章主要介绍了结构体的基础内容和使用,这篇接着讲述结构体的主要内容,例如计算结构体的大小,结构体的内存对齐规则,为什么存储结构体内存对齐,结构体如何传参

一、对齐规则

结构体对齐规则主要有以下几点:

  1. 结构体的第一个成员对齐和结构体变量起始位置偏移量为0地址处。

  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。 对齐数=编译器默认的一个对齐数与该成员变量大小的较小值 注意:VS默认的值为8 Linux中gcc没有默认对齐数,对齐数就是成员自身的大小

  3. 结构体总大小为最大对齐数(结构体中每个成员变量都有一个对齐数,所有对齐数中最大的)的整数倍。

  4. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。

这么说可能有点抽象,我们举个例子并画个图来解释一下
例1:

struct S1
{
	char c1;
	int i;
	char c2;
};
int main()
{
	printf("%d\n", sizeof(struct S1));
	return 0;
}


例2:

struct S2
{
	char c1;//c1是一个字节,VS默认对齐数为8,根据对齐规则,取较小值,所以对齐数为1
	char c2;//同上,对齐数为1
	int i;//对齐数为4
};
int main()
{
	printf("%d\n", sizeof(struct S2));//原本的大小为1+4+1=6,
	//但最终要取成员中最大对齐数(4)整数倍的数,所以最终结果为8
	return 0;
}

运行结果图
例3:(嵌套结构体)

struct S3
{
	double d;
	char c;
	int i;
};//大小为16
struct S4
{
	char c1;//对齐数为1
	struct S3 s3;//对齐数为16
	double d;//对齐数为8
};
int main()
{
	printf("%d\n", sizeof(struct S4));//如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。

	return 0;
}

在这里插入图片描述
所以最终的结果为32

二、为什么存在内存对齐?

1.平台原因(移植原因):

不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

2.性能原因:

数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存只需要一次访问。假设一个处理器总是从内存取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对齐成8的倍数,那么就可以用一个内存操作来读或者写值了。否则,我们可能需要执行两次内存访问,因为对象可能被分在两个8字节内存块中。
总体来说结构体的内存对齐是拿空间来换取时间的做法。

三、如何修改默认对齐数

#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1
struct S
{
	char c1;
	int i;
	char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{
	//自己算算以下结果是什么趴
	printf("%d\n", sizeof(struct S));
	return 0;
}

结构体在对⻬⽅式不合适的时候,我们可以⾃⼰更改默认对⻬数。

四、结构体传参

struct S
{
	int data[1000];
	int num;
};
struct S s = { {1,2,3,4}, 1000 };
//结构体传参
void print1(struct S s)
{
	printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
	printf("%d\n", ps->num);
}
int main()
{
	print1(s); //传结构体
	print2(&s); //传地址
	return 0;
}

注意

  • 函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
  • 如果传递一个结构体对象的时候,结构体过大,参数压栈的系统开销比较大,所以会导致性能的下降。(结构体就像一个“超级数组”,也需要开辟空间,且开辟的空间有时比较大,所以用指针访问结构图是最优的选择)

结构体实现位段

1、什么是位段

  • 位段的声明和结构是类似的,有两个不同: 位段的成员必须是int、unsigned int 或signed int
    在C99中位段成员的类型也可以选择其他类型 。

  • 位段的成员名后边有一个冒号和数字。

  • 位段的出现就是为了节省空间。

  • 位段是基于结构的。

例如:

struct A
{
int a : 2;//2指a占2个比特位
int b : 5;//5指b占5个比特位
int c : 10;//10指c占10个比特位
int d:30;
};

那么段位A所占的内存大小是多少?
在这里插入图片描述

这里明明是2+5+10+30=47个比特位,但结果为什么是8个字节,64个比特位呢?

这是由于对齐规则,编译器通常会对结构体进行填充,以确保结构体的每个成员都位于适当对齐的内存位置上。这个对齐过程可能导致结构体的实际大小大于成员位数之和。

编译器可能在结构体的最后添加了一些填充位,使得结构体的大小成为8字节的倍数。这是为了提高结构体的访问速度,因为访问未对齐的内存可能会导致性能下降。

所以说位段虽然节省了空间,但这种节省程度并非是绝对的。

2、位段的内存分配

1. 位段的成员可以是int、unsigned int、signed int或者是char等类型。
2. 位段的空间上是按照需要以四个字节(int)或者一个字节(char)的方式来开辟的。

举个例子:(这里我们先假设内存是从右向左使用的,且如果剩余的空间不够下一个成员使用,就浪费)

struct S
{
	char a : 3;
	char b : 4;
	char c : 5;
	char d : 4;
};
int main()
{
	struct S s = { 0 };
	s.a = 10;
	s.b = 12;
	s.c = 3;
	s.d = 4;
	printf("%d", sizeof(struct S));
}

在这里插入图片描述

在这里插入图片描述

结果如图所示,这也说明了在VS中,我们上面的假设是成立的。

3、位段的跨平台问题

位段涉及很多不确定因素,位段是不跨平台的,注意可移植性的程序应该避免使用位段。
原因如下:

1、比如在内存中开辟了一块32位的空间,存入的数据是从左边开始存还是从右边开始存储的,C语言没有明确规定
在这里插入图片描述
2、在这里插入图片描述
这个问题C语言又没明确规定,所以也是取决于编译器如何实现的
3、位段中最大数的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会出现问题。)

4、int位段被当成有符号数还是无符号数是不确定的。

总的来说,跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

总结

以上就是今天要讲的内容,本文主要是对结构体进一步的认识,本文的内容是比较热门的考点,需要把本文的内容掌握的比较牢固。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1279899.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java 使用对应arthas 调试程序

1、作用 使用 arthas 可以进行如下操作 ① 抓取对应函数的耗时结构&#xff0c;然后分析对应的代码优化代码 ② 抓取对应函数的 入参、出参函数 ③ 重放对应的函数执行 ④ 查询对应程序占用结构&#xff0c;比如 cpu, jvm ⑤ 查询对应的 执行最频繁的 线程 ⑥ 打印函数…

震惊!我和GPT玩了一天游戏·····

最近开始研究如何基于GPT构建一个游戏引擎&#xff0c;于是先从简单的文字游戏开始探索。 从最简单的选择机制、故事机制&#xff0c;完善成一个包括天气、事件、技能、属性、伙伴、建造系统的-生化危机版文字游戏-。 我唯一的体验是&#xff1a;AI游戏&#xff0c;大有可为! …

C++11--右值引用

目录 基本概念 左值和右值 左值引用和右值引用 右值引用使用场景和意义 左值引用使用场景 左值引用的短板 右值引用和移动语义 右值引用引用左值 右值引用的其他使用场景 完美转发 万能引用 完美转发保持值得属性 完美转发使用得场景 基本概念 左值和右值 什么…

二叉树链式结构的实现和二叉树的遍历以及判断完全二叉树

二叉树的实现 定义结构体 我们首先定义一个结构来存放二叉树的节点 结构体里分别存放左子节点和右子节点以及节点存放的数据 typedef int BTDataType; typedef struct BinaryTreeNode {BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right; }BTNode;…

solidity实现ERC20代币标准

文章目录 IERC20ERC20Remix 编译部署 IERC20 IERC20 是 ERC20 标准的接口规范&#xff0c;它定义和规范了一个标准 ERC20 代币合约应该实现的功能。这里让 ERC20 合约直接继承自 IERC20 接口。 // SPDX-License-Identifier: MIT pragma solidity ^0.8.4;interface IERC20 { // …

2023软件测试大赛总结

2023软件测试大赛总结 文章目录 2023软件测试大赛总结软件下载方式比赛方式个人总结断言使用java基础 预选赛省赛国赛 软件下载方式 进入官网下载插件&#xff08;直接下载一个完整的Eclipse就可以,这样比较方便&#xff09; 需要保证jdk版本和要求的一致&#xff0c;不然可能…

【Spring Boot 源码学习】ApplicationContextInitializer 详解

Spring Boot 源码学习系列 ApplicationContextInitializer 详解 引言往期内容主要内容1. 初识 ApplicationContextInitializer2. 加载 ApplicationContextInitializer3. ApplicationContextInitializer 的初始化 总结 引言 书接前文《初识 SpringApplication》&#xff0c;我们…

LeetCode(50)有效的括号【栈】【简单】

目录 1.题目2.答案3.提交结果截图 链接&#xff1a; 有效的括号 1.题目 给定一个只包括 (&#xff0c;)&#xff0c;{&#xff0c;}&#xff0c;[&#xff0c;] 的字符串 s &#xff0c;判断字符串是否有效。 有效字符串需满足&#xff1a; 左括号必须用相同类型的右括号闭合…

Linux基础项目开发1:量产工具——页面系统(六)

前言&#xff1a; 前面我们已经将显示系统、输入系统、文字系统、UI系统全部搭建好了&#xff0c;下面就到了开发板页面的布局&#xff0c;也就是实现按钮在开发板页面上的每个位置&#xff0c;下面让我们一起实现页面的搭建与布局设计吧。 目录 一、数据结构抽象 page_manager…

报考公务员简历(精选8篇)

想要成功进入公务员队伍&#xff0c;一份出色的个人简历是必不可少的。本文为大家精选了8篇报考公务员的个人简历案例&#xff0c;无论是应届毕业生还是有工作经验的求职者&#xff0c;都能从中汲取灵感&#xff0c;提升简历质量。找到心仪的公务员岗位。 报考公务员简历模板下…

java 工具类: CompareUtils(比较对象字段值变化)

一、前言 我们在工作中&#xff0c;可能会在日志中记录数据的变化情况或者在公共处理的数据增加一个日志页面&#xff0c;记录每次修改的变化。我们可以根据CompareUtils工具类比较数据前后发生了怎样的变化, 这样我们就可以知道数据做了哪些改变. 二、条件限制 在写这个通用…

Ontrack EasyRecovery2024数据恢复软件详细功能介绍

Ontrack EasyRecovery2024是一款功能强大的数据恢复软件&#xff0c;它可以帮助用户从各种存储设备中恢复丢失或删除的数据。它支持多种文件系统和文件类型&#xff0c;可以恢复包括照片、视频、音频、文档、电子邮件和归档文件等不同类型的数据。 EasyRecovery15Mac版本下载如…

轻易云AI:引领企业数智化转型提升企业AI效率

近期&#xff0c;轻易云AI与汤臣倍健的合作引起了业界的广泛关注。通过这一合作&#xff0c;轻易云AI不仅成功打造了集团小汤AI助手这一标志性的企业智能助手&#xff0c;更重要的是&#xff0c;这一合作凸显了轻易云AI作为专业AI应用集成专家的核心能力。轻易云AI已成功集成了…

柯桥西班牙语学校|实用西语吉祥话,场景都帮你想好了

1. ¡Feliz cumpleaos! Que este da est lleno de alegra, amor y bendiciones. (祝你生日快乐&#xff01;愿这一天充满欢乐、爱和祝福。) 2. ¡Hey [nombre del amigo/a]! Sabes qu da es hoy? ¡Es tu cumpleaos! Quera aprovechar para desearte un da lleno…

SSL证书如何影响SEO优化结果?

1.搜索引擎偏好&#xff1a;谷歌、百度等主流搜索引擎明确表示&#xff0c;他们会优先收录并给予使用HTTPS协议的网站更高的排名。这是因为HTTPS提供了一种更为安全的浏览环境&#xff0c;有助于提升用户的信任度和满意度。 2.用户体验&#xff1a;安装SSL证书可以提高网站的信…

【面试攻略】Oracle中blob和clob的区别及查询修改方法

大家好&#xff0c;我是小米&#xff0c;欢迎来到小米的技术小屋&#xff01;今天我们要一起来聊聊一个在面试中常常被问到的问题——“Oracle中Blob和Clob有啥区别&#xff0c;在代码中怎么查询和修改这两个类型的字段里的内容&#xff1f;”别急&#xff0c;跟着小米一步步揭…

WordPress付费阅读、付费下载、付费复制插件推荐

如果我们是用WordPress内核程序&#xff0c;我们可以用插件解决这个功能。现在市面上小编有看到三款WordPress内容付费或者是有的称作WordPress会员插件&#xff0c;可以实现WordPress付费阅读、付费下载&#xff0c;甚至付费复制的功能。在这几个插件中&#xff0c;简单的盘点…

文案二次创作软件,文案二次创作的软件

文案创作成为品牌传播和营销不可或缺的一环。对于许多从业者而言&#xff0c;文案创作常常是一项既耗时又耗力的工作。为了解决这一文案创作的难题&#xff0c;市场上涌现出了众多的智能文案生成工具。我们通过对这些工具的介绍和分析&#xff0c;希望能够为你提供一些在文案创…

微服务实战系列之Redis

前言 云淡天高&#xff0c;落木萧萧&#xff0c;一阵西北风掠过&#xff0c;似寒刀。冬天渐渐变得更名副其实了&#xff0c;“暖冬”的说法有点言过其实了。——碎碎念 微服务实战系列之Cache微服务实战系列之Nginx&#xff08;技巧篇&#xff09;微服务实战系列之Nginx微服务实…

实战分析和精华总结:CORS跨域资源共享漏洞数据劫持、复现、分析、利用及修复过程

实战分析和精华总结:CORS跨域资源共享漏洞数据劫持、复现、分析、利用及修复过程。 CORS跨域资源共享漏洞与JSONP劫持漏洞类似,都是程序员在解决跨域问题中进行了错误的配置。攻击者可以利用Web应用对用户请求数据包的Origin头校验不严格,诱骗受害者访问攻击者制作好的恶意…