阅读笔记|A Survey of Large Language Models

news2025/1/25 9:15:30

阅读笔记

模型选择:是否一定要选择参数量巨大的模型?如果需要更好的泛化能力,用于处理非单一的任务,例如对话,则可用选更大的模型;而对于单一明确的任务,则不一定越大越好,参数小一些的模型也能调教得很好。

接口交互:大语言模型可以使用网络请求接口获取其本身在预训练中没有的额外信息。

多模态:大语言模型展现出良好的多模态理解能力,特别是对于图片数据的处理能力。因此其对于一个网络中拓扑结构、流量矩阵等数据也是存在了可以理解和处理的可能的。

语言如何输入:自然语言首先需要被tokenize,从而将其用数字进行表示,使其可以正式输入模型。在输入模型后,还会进行词嵌入表示(或者是词的分布式表示),也就是进一步用多维向量表示一个词。词嵌入并非Transformer首创,此前的工作中已经在广泛使用词嵌入方法了,大名鼎鼎的Word2Vec就是其中一种。

“预训练和微调”学习范式:预训练是从CV兴起而后借鉴到NLP的一种训练方法,通常是无监督的。对于PLM,通常使用大量语料进行预训练,其过程无需人工标记,而是利用已有的词句信息对某一词进行预测。微调是指在PLM的基础上,进一步根据下游子任务的要求,对PLM进行更具针对性的有监督训练(包括对齐)并更新参数,使其适应子任务。微调主要分为指令微调和对齐微调。对于一些领域的子任务,PLM甚至无需微调也能依靠自身的上下文学习能力达到不错的效果。

与人类对齐:由于预训练数据不可避免参杂与主流价值观不符的内容,模型需要与人类价值观或偏好进行对齐,以减少危害并增加性能。相关工作利用带人类反馈的强化学习(RLHF)进行微调对齐。

扩展与扩展法则:语言模型在模型规模、数据规模和总计算量上的扩展,一般会使模型具备更好的特性与理解输出能力,并更可能涌现能力(包括上下文学习、指令遵循、逐步推理等)。LLMs由于规模扩展而产生的影响的现象成为扩展效应,有相关研究定量描述了LLMs的扩展法则。

代码数据训练提高CoT提示能力:Codex是在PLM基础上使用大量Github代码微调的GPT模型,可以解决困难的编程问题并在数学问题上有显著性能提升,猜测称代码训练可提高其思维链(CoT)提示能力。

LLMs资源:LLMs的预训练需要耗费大量资源(微调更新权重也很消耗),建议在已有开源资源基础上进行开发,包括开源模型和公共API(可微调),以及公开语料库,详细信息下面四张图总结得很好。

图片1.png

图片2.png

图片3.png
图片4.png

模型训练:预训练阶段的任务通常有语言建模和去噪自编码,语言建模任务针对不同模型结构(因果解码器casual decoder、前缀解码器prefix decoder等)有不同任务变体。此外,训练LLM时最为重要的便是设置和技巧。

  • 训练中动态增大batch size以有效稳定LLM训练过程

  • 动态学习率策略如初始采用线性增加预热策略,后续采用余弦衰减策略

  • 使用权重衰减和梯度裁剪来稳定训练,避免模型崩溃。

  • 采用数据并行、流水线并行、张量并行、ZeRO和混合精度训练等方法在有限资源情况下进行高效的并行化训练。

RLHF用于微调:在有监督微调结束后,可以应用基于人类反馈的强化学习来进行对齐微调,更好地学习人类偏好。其中较为关键的我认为有两方面,一方面是奖励模型,相关工作使用有标注数据有监督地训练一个奖励模型预测人类偏好;另一方面是将LLM的微调形式化为强化学习问题。

LLM使用:经过预训练或微调后,模型的使用也别有学问,OpenAI的报告中大量做了这方面的文章。较为著名的使用策略有上下文学习和思维链提示。

LLM评估:主流的评估方法是在公共NLP任务数据集上进行测试评估。而专用于网络配置或是其他类似子任务的公共数据集暂时没有看到。因此这方面的评估需要进一步的设计和探讨。

LLM主要问题:在语言生成方面,其可控生成和专业化生成能力仍然面临挑战,例如在一般类型数据集训练的LM用于涉及专业知识的医学报告时。在知识利用方面,LM存在幻觉和知识实时性问题。前者表示LM会捏造事实,后者表示LM难以处理需要更新鲜知识的任务。在复杂推理方面,LM存在不一致性和数值计算问题。前者表示LM的推理路径与结果并不一致,后者表示LM的数值计算能力仍然有待提高。

个人感想

  • 此篇论文很好地揭示了LLM在结构、预训练、微调、评估等等诸多方面的细节。但由于技术日新月异,比较遗憾地是没有看到更新的关于多模态方面的介绍。
  • LLM的训练与微调有资源门槛,但有公开的模型可通过API进行微调,这一点可以考虑加以利用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1279203.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Basemap地图绘制_Python数据分析与可视化

Basemap地图绘制 安装和使用地图投影地图背景在地图上画数据 Basemap是Matplotlib的一个子包,负责地图绘制。在数据可视化过程中,我们常需要将数据在地图上画出来。 比如说我们在地图上画出城市人口,飞机航线,军事基地&#xff0c…

Windows远程桌面提示出现身份验证错误 要求的函数不支持

现象 解决方案: 在cmd运行框输入:gpedit.msc打开组策略编辑器路径:计算机配置→管理模板→Windows组件→远程桌面服务→远程桌面会话主机→安全开启远程连接要求使用指定的安全层 禁用要求使用网络级别的身份验证对远程连接的用户进行身份验…

光学3D表面轮廓仪超0.1nm纵向分辨能力,让显微形貌分毫毕现

在工业应用中,光学3D表面轮廓仪超0.1nm的纵向分辨能力能够高精度测量物体的表面形貌,可用于质量控制、表面工程和纳米制造等领域。 与其它表面形貌测量方法相比,光学3D表面轮廓仪达到纳米级别的相移干涉法(PSI)和垂直扫描干涉法(VSI)&#x…

深入理解Servlet(下)

作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 在这一篇文章里&#x…

Centos图形化界面封装OpenStack Ubuntu镜像

目录 背景 环境 搭建kvm环境 安装ubuntu虚机 虚机设置 系统安装 登录虚机 安装cloud-init 安装cloud-utils-growpart 关闭实例 删除细节信息 删除网卡细节 使虚机脱离libvirt纳管 结束与验证 压缩与转移 验证是否能够正常运行 背景 一般的镜像文件在上传OpenSt…

计算机毕业设计 基于协同推荐的白酒销售管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…

TCA9548A I2C 多路复用器 Arduino 使用相同地址 I2C 设备

在本教程中,我们将学习如何将 TCA9548A I2C 多路复用器与 Arduino 结合使用。我们将讨论如何通过整合硬件解决方案来使用多个具有相同地址的 Arduino 的 I2C 设备。通过使用 TCA9548A I2C 多路复用器,我们将能够增加 Arduino 的 I2C 地址范围&#xff0c…

前端打包添加前缀

vue2添加前缀 router的base加上前缀 export default new Router({mode: history, // 去掉url中的#base: privateDeployUrl, // 这里加上前缀scrollBehavior: () > ({y: 0}),routes: constantRoutes })vue.config.js,publicPath属性加上前缀 publicPath: proces…

组件化编程

hello,我是小索奇,精心制作的Vue系列持续发放,涵盖大量的经验和示例,如果对您有用,可以点赞收藏哈~ 组件化编程 组件是什么? 一句话概括就是:实现特定功能的模块化代码单元 vm就是大哥&#xff…

Leetcode刷题详解——乘积最大子数组

1. 题目链接:152. 乘积最大子数组 2. 题目描述: 给你一个整数数组 nums ,请你找出数组中乘积最大的非空连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。 测试用例的答案是一个 32-位…

2023-12-03 LeetCode每日一题(可获得的最大点数)

2023-12-03每日一题 一、题目编号 1423. 可获得的最大点数二、题目链接 点击跳转到题目位置 三、题目描述 几张卡牌 排成一行,每张卡牌都有一个对应的点数。点数由整数数组 cardPoints 给出。 每次行动,你可以从行的开头或者末尾拿一张卡牌&#x…

[HTB][Sherlocks] Meerkat

作为一家快速发展的初创公司,Forela一直在利用商业管理平台。不幸的是,我们的文档很少,而且我们的管理员也不是最有安全意识的。作为我们的新安全提供商,我们希望您查看我们导出的一些PCAP和日志数据,以确认我们是否已…

Nginx实现多虚拟主机配置

Nginx实现多虚拟主机配置 Nginx为什么要进行多虚拟主机配置呢?what? Nginx实现多虚拟主机配置的主要原因是,一个服务器可能会承载多个网站或应用程序,这些网站或应用程序需要使用不同的域名或IP地址来进行访问。如果只有一个虚拟…

代码随想录第二十二天(一刷C语言)|组合总数电话号码的字母组合

创作目的:为了方便自己后续复习重点,以及养成写博客的习惯。 一、组合总数 思路:参考carl文档和视频 1、需要一维数组path来存放符合条件的结果,二维数组result来存放结果集。 2、targetSum 目标和,也就是题目中的…

Java基础-----Date类及其相关类(一)

文章目录 1. Date类1.1 简介1.2 构造方法1.3 主要方法 2. DateFormat 类2.1 简介2.2 实例化方式一:通过静态方法的调用2.2 实例化方式二:通过创建子类对象 3. Calendar类4. GregorianCalendar 1. Date类 1.1 简介 java.util.Date:表示指定的时间信息&a…

市面上的AR眼镜:优缺点分析

AR眼镜是近年来备受关注的科技产品之一。它通过将虚拟信息叠加到现实世界中,为用户提供全新的视觉体验。目前,市面上的AR眼镜主要分为两类:消费级AR眼镜和企业级AR眼镜。 消费级AR眼镜 消费级AR眼镜的特点是轻便、时尚、易于佩戴&#xff0…

DOM 事件的注册和移除

前端面试大全DOM 事件的注册和移除 🌟经典真题 🌟DOM 注册事件 HTML 元素中注册事件 DOM0 级方式注册事件 DOM2 级方式注册事件 🌟DOM 移除事件 🌟真题解答 🌟总结 🌟经典真题 总结一下 DOM 中如何…

【STM32】TIM定时器

第一部分:定时器基本定时的功能; 第二部分:定时器的输出比较功能; 第三部分:定时器输入捕获的功能; 第四部分:定时器的编码接口。 1 TIM简介 TIM(Timer)定时器&#…

计算机网络TCP篇②

一、TCP 重传、滑动窗口、流量控制、拥塞控制 1.1、重传机制 在 TCP 中,当发送端的数据达到接受主机时,接收端主机会返回一个确认应答消息,表示已收到消息。但是在复杂的网络中,并一定能顺利正常的进行数据传输,&…

从零开始搭建博客网站-----登陆页面

登录按钮以及背景图设置 安装element-plus和css插件 npm install element-plus --save npm install sass --save npm install sass-loader --save在main.js里引用 寻找背景图存入assets文件下,并且在Login.vue里设置背景图和登录按钮 设置的背景图的大小没有起…