HashMap源码全面解析

news2025/2/27 1:43:08

目录

注:本篇文章是在JDK1.8版本源码进行分析。

一、概述

HashMap 是基于哈希表的 Map接口的实现,是以 key-value 存储形式存在,即主要用来存储键值对。

HashMap的类图:

HashMap类图

HashMap继承抽象类AbstractMap,实现了Map、Cloneable、Serializable等接口。

抽象类AbstractMap实现了Map接口

二、底层数据结构

JDK1.8 中,HashMap 是由数组 + 链表 + 红黑树构成。

数据结构示意图:

底层数据结构

三、特点

  • 键值对存储:HashMap中,每个元素都是一个键值对。这意味着你可以通过键(key)来访问或者修改对应的值(value)。

  • 无序:在HashMap中,元素的位置取决于插入的顺序,而不是键值对的排序。因此,你无法通过索引来访问元素,因为元素的位置是不确定的。

  • 允许使用null值和null键:在HashMap中,允许使用null作为键和值。但是需要注意的是,对于同一个键(key),HashMap中只能有一个对应的值(value)。

  • 高效的插入和查找操作:HashMap基于哈希表(Hash table)实现,因此对于插入和查找操作,时间复杂度为O(1)。在大多数情况下,这是一个非常高效的特性。

  • 动态扩容:当HashMap中的元素数量达到一定的阈值(默认为HashMap容量的一半)时,HashMap会进行扩容,以提供更好的性能。扩容会导致所有元素的重新哈希,可能对性能产生影响。

  • 线程不安全:HashMap不是线程安全的。如果在多线程环境下使用HashMap,可能需要考虑使用线程安全的替代品,如ConcurrentHashMap,或者使用Collections.synchronizedMap()方法来包装一个HashMap以实现线程安全。

  • 基于Java泛型实现:HashMap支持泛型,这意味着你可以存储任何类型的键和值。

  • 允许使用任何非空对象作为键:与一些其他Map实现不同,HashMap允许使用任何非空对象作为键。这使得HashMap在灵活性上优于其他一些Map实现。

四、常用方法

方法方法描述
put(K key, V value)添加键值对
get(Object key)根据键获取值
keySet()获取所有键的集合
entrySet()获取Map.Entry<K, V> Set集合
clear()清空
containsKey(Object key)判断是否存在指定的key, 返回一个布尔值
remove(Object key)根据指定的key删除键值对
remove(Object key, Object value)根据key以及value删除键值对
size()获取map集合元素的个数
isEmpty()判断map是否为空

五、源码解析

5.1、属性解析

// 默认数组的初始容量
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

// 数据的最大容量 1 << 30值为1073741824
static final int MAXIMUM_CAPACITY = 1 << 30;

// HashMap的默认加载因子,用于判断什么时候什么时候table需要进行扩容
static final float DEFAULT_LOAD_FACTOR = 0.75f;

// 转化为树的阈值,什么时候桶上的元素超过多少个,转化为红黑树
static final int TREEIFY_THRESHOLD = 8;

// 树退化为链表反的阈值,当桶上的元素小于这个值的时候,将把树转换为链表
static final int UNTREEIFY_THRESHOLD = 6;

// 数组长度转为红黑树的阈值,table中的最小容量(桶的最少个数),只有超过64个桶,才能转化为红黑树
static final int MIN_TREEIFY_CAPACITY = 64;

// 用来存储元素的数组,数组的长度始终等于2的幂次方
transient Node<K,V>[] table;

// 保存缓存的 entrySet(),也就是存放的键值对
transient Set<Map.Entry<K,V>> entrySet;

// HashMap中存放的所有元素个数
transient int size;

// 对HashMap进行结构修改的计数器
transient int modCount;

// 扩容临界值,当不为null的桶的个数超过了这个值,对table进行扩容,threshold = loadFactor * capacity
int threshold;

// 加载因子,默认为0.75
final float loadFactor;

从上面属性可到HashMap类中有一个非常重要的字段——Node<K,V>[] table,哈希桶数组,是一个Node的数组

static class Node<K,V> implements Map.Entry<K,V> {
        // 存放hash值
        final int hash;
        // 存放元素key
        final K key;
        // 存放元素value
        V value;
        // 存放下一个节点
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

5.2、构造方法

HashMap 提供了四种构造方法:

  • 默认构造方法
public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

解析:将加载因子loadFactor设置了默认值0.75,而其他的字段都设置为了本来的默认值,此时map还是为空;此种方式也是我们使用最多的方式。

  • 指定初始容量的构造方法
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

解析:构造一个只有指定初始容量initialCapacity的方法,该构造方法我们可以看到是调用下面的两个参数的构造方法,只不过加载因子loadFactor 赋值了默认值DEFAULT_LOAD_FACTOR(0.75)。

  • 指定初始容量和负载因子的构造方法
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}

解析:该构造方法指定了初始容量initialCapacity和加载因子loadFactor;

如果initialCapacity小于0,抛出IllegalArgumentException 异常。

如果initialCapacity值超过最大值则使用默认最大值 MAXIMUM_CAPACITY

其中重要的是是tableSizeFor方法:

static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

该方法是将传过来的初始化容量initialCapacity,如果不是2的次幂,直接转化为大于或者等于传入cap的最小2的整次幂。

  • 指定一个map集合,转化为HashMap的构造方法
public HashMap(Map<? extends K, ? extends V> m) {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    putMapEntries(m, false);
}

解析:该方法指定了 map 的构造函数,并赋值加载因子loadFactor为默认值,调用putMapEntries方法完成HashMap的初始化赋值过程。

// putMapEntries 方法
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
    int s = m.size();
    if (s > 0) {
        if (table == null) { // pre-size
            float ft = ((float)s / loadFactor) + 1.0F;
            int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                     (int)ft : MAXIMUM_CAPACITY);
            if (t > threshold)
                threshold = tableSizeFor(t);
        }
        else if (s > threshold)
            resize();
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
            K key = e.getKey();
            V value = e.getValue();
            putVal(hash(key), key, value, false, evict);
        }
    }
}

解析:

putMapEntries方法首先获取参数map的大小s;判断s是否大于0;若大于0的情况下,判断table是否已经初始化;

1、如果table == null一般是构造函数来调用的putMapEntries,或者构造后还没放过任何元素;

计算HashMap的最小需要的容量,这里Map的大小s就被当作HashMap的扩容阈值,然后用传入Map的大小除以负载因子就能得到对应的HashMap的容量大小(当前m的大小 / 负载因子 = HashMap容量);

注:((float)s / loadFactor) 计算出来的结果可能会有小数,必须向上取整,所以这里要加1。

判断ft是否超过最大容量大小,小于则取ft值,大于则取最大容量MAXIMUM_CAPACITY;此时threshold为0, 调用tableSizeFor方法,直接获取下次扩容的2次幂的值,赋值给扩容阈值threshold。

2、下一个if分支s > threshold说明 table初始化了,且传入数量大小大于扩容阈值,调用resize()方法进行扩容。

最后遍历参数map,将map中的key和value添加到HashMap中。

关于putVal方法后面进行详细介绍。

5.3、常用方法解析

put方法

具体流程图:

put方法流程图

源码

// put 方法
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

解析:HashMap 调用put方法添加元素,传入key, vlaue。 获取key之后求得key的hash值然后调用putVal方法。

// hash方法
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

解析: 进行哈希值的扰动,获取一个新的哈希值,从上面可以看出:hashMap是可以允许key为空的。

putVal方法
// putVal方法
/**
 * 参数含义:
 * hash :经过hash函数运算后的key
 * key:要添加的元素的键key
 * value: 要添加的元素的值value
 * onlyIfAbsent:  如果为true,则不要更改现有值,为false,可以替换更改,从put方法入参可以看出此处值为     *  false
 * evict:  若为false,则表处于创建模式;此处值为true
 **/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // (1) 判断table是否为空,若为空,先调用resize()方法进行扩容
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // (2) 通过hash得到的值与数组的大小-1进行与运算,这个运算就可以实现取模操作,位运算的好处就是速度比较     //  快;得到的结果即为数组的下标;取出该下表对应的节点赋值给p,判断该位置是否已存在元素
    if ((p = tab[i = (n - 1) & hash]) == null)
    //  该位置没有元素;把key、value包装成newNode节点,添加到此位置。
        tab[i] = newNode(hash, key, value, null);
    else {
    // 当前数组下标位置已经有元素:
        Node<K,V> e; K k;
    // (3)当前位置元素的hash值等于传过来的入参hash值,并且他们的key值也相等
        if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
         // 则把p赋值给e,后续用新的值来替换旧的值
            e = p;
    // (4)判断是不是红黑树
        else if (p instanceof TreeNode)
    // 是红黑树的话,进行红黑树的相关操作
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
    // (5)到这里新数据和当前数组既不相同,也不是红黑树节点,证明是链表
        else {
    // 下面便利整个链表
            for (int binCount = 0; ; ++binCount) {
    // 判断next节点,如果为空的话,证明遍历到链表尾部
                if ((e = p.next) == null) {
    // 把新值放入链表尾部
                    p.next = newNode(hash, key, value, null);
    // 新插入了一条数据,此时判断链表长度是不是大于等于8
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
    // 链表长度大于等于8,进行链表转化为红黑树操作
                        treeifyBin(tab, hash);
                    break;
                }
    // 如果在链表中找到了相同key的话,直接退出循环
        if (e.hash == hash &&  ((k = e.key) == key || (key != null && key.equals(k))))
             break;
    // 把下一个节点赋值为当前节点
             p = e;
            }
        }
    // 判断e是否为空,e的值为修改操作存放原数据的变量
        if (e != null) { // existing mapping for key
    // 把值取出来
            V oldValue = e.value;
    // 判断是不是允许覆盖旧值且onlyIfAbsent 传进来的是false
            if (!onlyIfAbsent || oldValue == null)
    // 新值覆盖为旧值
                e.value = value;
            afterNodeAccess(e);
    // 返回旧值
            return oldValue;
        }
    }
    // 计数器累加,计算当前节点的修改次数
    ++modCount;
    // 判断当前数组大小是否大于扩容阈值threshold
    if (++size > threshold)
    // 大于的话,扩容操作
        resize();
    afterNodeInsertion(evict);
    return null;
}
treeifyBin方法

在上面的源码中当链表长度大于等于8,调用treeifyBin方法进行链表转化为红黑树的操作,下面我们接着分析treeifyBin方法

// treeifyBin方法
final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
    // 判断此时数组的长度是否小于MIN_TREEIFY_CAPACITY(64),不一定转化为红黑树还可能只是扩容;主要桶数组容量是否小于 MIN_TREEIFY_CAPACITY
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
    // 小于64 进行扩容,然后插入数据
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
        // 定义变量 头部hd  尾部 tl
            TreeNode<K,V> hd = null, tl = null;
            do {
        // 将普通节点转换为树节点,但此时还不是红黑树,也就是说还不一定平衡
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                 // 转红黑树操作
                hd.treeify(tab);
        }
    }
resize方法

在 HashMap 中,桶数组的长度均是2的幂,阈值大小为桶数组长度与负载因子的乘积。当 HashMap 中的键值对数量超过阈值时,进行扩容。

HashMap 的扩容机制与其他变长集合的套路不太一样,HashMap 按当前桶数组长度的2倍进行扩容,阈值也变为原来的2倍(如果计算过程中,阈值溢出归零,则按阈值公式重新计算)。扩容之后,要重新计算键值对的位置,并把它们移动到合适的位置上去。

具体实现如下:

// resize方法
final Node<K,V>[] resize() {
   // 把原来的数据赋值给oldTab
    Node<K,V>[] oldTab = table;
   // 获取原来数组的大小,为空的话 赋值为0
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
   // 原来数组的扩容阈值,赋值给oldThr
    int oldThr = threshold;
   // 新数组的容量、扩容阈值
    int newCap, newThr = 0;
   // 判断数组容量是否大于0,大于0说明数组已经初始化
    if (oldCap > 0) {
   // 判断当前数组长度是否大于最大数组长度()
        if (oldCap >= MAXIMUM_CAPACITY) {
   // 若为是,将扩容阈值直接设置为int类型的最大数值
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
   // 判断旧容量oldCap在DEFAULT_INITIAL_CAPACITY(16)至上限之间
    else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
   // 新数组的容量和阈值都扩大原来的2倍
            newThr = oldThr << 1; // double threshold
    }
   // 该分支,oldCap <= 0,oldThr > 0 调用 HashMap(int) 和 HashMap(int, float) 构造方法时会产生    // 这种情况,此种情况下 newCap = oldThr
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
   // 该分支,说明 oldCap 和 oldThr 都是小于等于0的,也说明我们的map是通过默认无参构造来创建的
   // newCap 赋值为16  newThr 赋值为16 * 0.75 = 12
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
   // 注意:该判断只有经过上面的 else if (oldThr > 0)这个分支才能进入
    if (newThr == 0) {
    // 计算新数组的阈值
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
   // 根据上边计算得出的容量 创建新的数组,构造函数时,并没有创建数组,在第一次调用put方法,导致resize的时    // 候,才会把数组创建出来; 这是为了延迟加载,提高效率。      
     Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
   // 判断原来的数组有没有值,如果没有则把刚刚创建的数组进行返回
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                // 当前节点没有挂在链表,直接计算新坐标插入
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                // 如果节点类型为树
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                // 如果是链表
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                // 存放下一个节点
                    Node<K,V> next;
                    do {
                // 取出下一个节点
                        next = e.next;
                 // 如果当前元素的hash值和oldCap做与运算为0,则原位置不变
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                     // 不为0则把数据移动到新位置
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    
                  // 原位置不变的一条链表,数组下标不变
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                  //移动到新位置的一条链表,数组下标为原下标加上原数组的容量
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
   // 返回新的数组
    return newTab;
}

小结:

转化为红黑树的两个条件:

  • 链表长度大于等于 TREEIFY_THRESHOLD(8)

  • 桶数组容量大于等于 MIN_TREEIFY_CAPACITY(64)

get方法

源码:

// get方法:根据key值 获取对应的value
public V get(Object key) {
    Node<K,V> e;
    // 调用下面的getNode方法
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}
// getNode方法
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    // 判断数组是不是为空,根据当前hash值计算出来的下标位置,并取出元素值
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // 找到对应的key,直接返回
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 接着向下找
        if ((e = first.next) != null) {
            // 若为红黑树,调用getTreeNode方法找对应的值
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {
                // 不为红黑树,说明这里为链表,进行循环向下找,找到就返回
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    // 根据key没有没有找到对应的value,返回null
    return null;
}
containsKey方法

源码:

public boolean containsKey(Object key) {
    return getNode(hash(key), key) != null;
}

containsKey方法,发现实际调用的也是getNode方法,只需要判断getNode方法返回是否为null即可; 关于getNode方法在get方法已经介绍,这里不再介绍;

remove方法

源码:

// 根据key将相应的元素删除 key存在返回对应的value;不存在返回null
public V remove(Object key) {
    Node<K,V> e;
    // 调用removeNode方法
    return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value,
                           boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
    // 判断table 是否为空
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
     // 数组中的第一个节点就是我们要删除的节点
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
      // 把需要删除的p节点赋值给node
            node = p;
      // 判断后面的节点是否为null
        else if ((e = p.next) != null) {
      // 若为红黑树,将调用getTreeNode方法将对应的节点赋值给node
            if (p instanceof TreeNode)
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            else {
      // 这里是循环判断链表
                do {
                    if (e.hash == hash &&((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }
      // 这里的判断说明找到了需要删除的节点
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {
      // 若为红黑树  调用removeTreeNode方法进行删除
            if (node instanceof TreeNode)
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
      //删除的是头节点 只需要将节点数组对应位置指向到第二个节点即可
            else if (node == p)
                tab[index] = node.next;
      // else逻辑 不是头节点 p的下一个节点指向到node的下一个节点即可把node从链表中删除了
            else
                p.next = node.next;
            ++modCount;
      // 集合的大小-1
            --size;
            afterNodeRemoval(node);
      // 这里把删除的节点返回了
            return node;
        }
    }
    return null;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1278544.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

select选择框里填充图片,下拉选项带图片

遇到一个需求&#xff0c;选择下拉框选取图标&#xff0c;填充到框里 1、效果展示 2、代码 <el-form-item label"工种图标" class"Form_icon Form_label"><el-select ref"select" :value"formLabelAlign.icon" placeholder&…

2023年第十二届数学建模国际赛小美赛B题工业表面缺陷检测求解分析

2023年第十二届数学建模国际赛小美赛 B题 工业表面缺陷检测 原题再现&#xff1a; 金属或塑料制品的表面缺陷不仅影响产品的外观&#xff0c;还可能对产品的性能或耐久性造成严重损害。自动表面异常检测已经成为一个有趣而有前景的研究领域&#xff0c;对视觉检测的应用领域有…

PyQt6 QRadioButton单选按钮控件

​锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计33条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话…

Opencv框选黑色字体进行替换(涉及知识点:selectROI,在控制台输入字体大小,颜色,内容替换所选择的区域)

import cv2 from PIL import Image,ImageDraw,ImageFont import numpy as npimg_path ../img/ img_clean_path ../img_clean/ name xiao_ben suf .pngimg cv2.imread(img_pathnamesuf) cv2.imshow(original, img)# 选择ROI roi cv2.selectROI(windowName"original&q…

Linux多核飞控

Linux多核飞控是一种基于多核处理器构建的飞控系统&#xff0c;用于控制飞行器的飞行。这种飞控系统使用Linux操作系统作为主要的控制平台&#xff0c;可以支持多个处理器核心同时工作&#xff0c;以实现更高的性能和更快的响应速度。 Linux通常用于具有较高计算量和较大内存需…

Python读取json数据导出到Excel

一、JSON字符串转换为Python对象 导入Python的json模块。该模块包含两个重要的功能-loads和load,读取JSON文件&#xff0c;并将JSON数据解析为Python数据&#xff0c;除了JSON&#xff0c;我们还需要Python的原生函数open()。一般loads用于读取JSON字符串&#xff0c;而load()用…

【数据中台】开源项目(4)-BitSail

介绍 BitSail是字节跳动开源的基于分布式架构的高性能数据集成引擎, 支持多种异构数据源间的数据同步&#xff0c;并提供离线、实时、全量、增量场景下的全域数据集成解决方案&#xff0c;目前服务于字节内部几乎所有业务线&#xff0c;包括抖音、今日头条等&#xff0c;每天同…

CleanMyMac X2024Macos强大的系统优化工具

都说苹果的闪存是金子做的&#xff0c;这句话并非空穴来风&#xff0c;普遍都是256G起步&#xff0c;闪存没升级一个等级&#xff0c;价格都要增加上千元。昂贵的价格让多数消费者都只能选择低容量版本的mac。而低容量的mac是很难满足用户的需求的&#xff0c;伴随着时间的推移…

初始数据结构(加深对旋转的理解)

力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台备战技术面试&#xff1f;力扣提供海量技术面试资源&#xff0c;帮助你高效提升编程技能&#xff0c;轻松拿下世界 IT 名企 Dream Offer。https://leetcode.cn/problems/rotate-array/submissions/ 与字…

《堆》的模拟实现

目录 前言&#xff1a; 模拟实现《堆》&#xff1a; 1.自定义数据类型 2.初始化“堆” 3.销毁“堆” 4.进“堆” 关于AdjustUp() 5.删除堆顶元素 关于AdjustDown() 6.判断“堆”是否为空 7.求“堆”中的数据个数 8.求“堆”顶元素 总结&#xff1a; 前言&#xf…

锐捷RG-UAC应用网关 前台RCE漏洞复现

0x01 产品简介 锐捷RG-UAC系列应用管理网关是锐捷自主研发的应用管理产品。 0x02 漏洞概述 锐捷RG-UAC应用管理网关 nmc_sync.php 接口处存在命令执行漏洞&#xff0c;未经身份认证的攻击者可执行任意命令控制服务器权限。 0x03 复现环境 FOFA&#xff1a;app"Ruijie-R…

软著项目推荐 深度学习手势识别算法实现 - opencv python

文章目录 1 前言2 项目背景3 任务描述4 环境搭配5 项目实现5.1 准备数据5.2 构建网络5.3 开始训练5.4 模型评估 6 识别效果7 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习手势识别算法实现 - opencv python 该项目较为新颖…

宝塔面板:轻松玩转linux系统,实现服务器状态监控和运维部署!

. linux安装 安装命令概述基本设置软件安装设置安全设置文件管理日志模块终端模块计划任务卸载命令windows服务器安装 下载卸载遗留user.ini文件删除报错 宝塔面板是一款服务器管理软件&#xff0c;旨在提升运维效率。它支持一键安装LAMP/LNMP/集群/监控/网站/FTP/数据库/JAVA等…

【代码】计及碳捕集电厂低碳特性及需求响应的综合能源系统多时间尺度调度模型matlab/yalmip代码

程序名称&#xff1a;计及碳捕集电厂低碳特性及需求响应的综合能源系统多时间尺度调度模型 实现平台&#xff1a;matlab-yalmip-cplex/gurobi 代码简介&#xff1a;代码主要做的是一个虚拟电厂/微网多时间尺度电热综合能源系统低碳经济调度模型&#xff0c;源侧在碳捕集电厂中…

2024年美国大学生数学建模竞赛(MCM/ICM)论文写作方法指导

一、前言 谈笑有鸿儒&#xff0c;往来无白丁。鸟宿池边树&#xff0c;僧敲月下门。士为知己者死&#xff0c;女为悦己者容。吴楚东南坼&#xff0c;乾坤日夜浮。剪不断&#xff0c;理还乱&#xff0c;是离愁&#xff0c;别是一番滋味在心头。 重要提示&#xff1a;优秀论文的解…

Linux 匿名页反向映射

1. 何为反向映射 正向映射&#xff1a; 用户进程在申请内存时&#xff0c;内核并不会立刻给其分配物理内存&#xff0c;而是先为其分配一段虚拟地址空间&#xff0c;当进程访问该虚拟地址空间时&#xff0c;触发page fault异常&#xff0c;异常处理流程中会为其分配物理页面&am…

哪一款台灯适合学生考研用?热门学生护眼台灯推荐

近些年近视人数持续升高&#xff0c;我们越来越注意个人的健康问题&#xff0c;而对于视力健康&#xff0c;尤其是儿童青少年们&#xff0c;在3-14岁这个年龄段近视机率更高&#xff0c;儿童青少年近视率高达52.7%&#xff0c;随着市面上护眼台灯的种类越来越多&#xff0c;各种…

OpenTelemetry系列 - 第1篇 相关概念

目录 一、背景二、概念2.1 Traces & Span2.2 Metrics2.3 Logs2.4 Baggage2.5 OTel2.6 OTLP2.7 Resources2.8 Instrumentation Scope2.9 Sampling 三、核心组件 一、背景 OpenTelemetry是一个可观察性框架和工具包&#xff0c;旨在创建和管理遥测数据&#xff0c;如跟踪、指…

运维 | 关于IP网络相关的概念和原理

关注&#xff1a;CodingTechWork IP地址 IP介绍 概述 IP是TCP/IP协议族的核心&#xff0c;IP地址是电脑在网络中的唯一标识&#xff0c;全球唯一&#xff08;G公网IP&#xff09;。IP地址&#xff08;Internet Protocol Address&#xff09;是互联网协议地址&#xff0c;也…

LabVIEW在不同操作系统上使VI、可执行文件或安装程序

LabVIEW在不同操作系统上使VI、可执行文件或安装程序 LabVIEW可以在多个操作系统上运行&#xff0c;主要支持以下几种操作系统&#xff1a; Windows&#xff1a; LabVIEW在各个版本的Windows操作系统上都能运行&#xff0c;包括Windows 7、Windows 8和Windows10。LabVIEW为Wi…