基于python的FMCW雷达工作原理仿真

news2025/1/11 14:12:34

        这篇文章将介绍如何使用python来实现FMCW工作原理的仿真,第1章内容将介绍距离检测原理,第2章内容会介绍速度检测原理。

第1章

第1部分: 距离检测原理

        调制的连续波雷达通常也被叫做调频连续波(FMCW)雷达是一个使用频率调制来测量目标的距离的系统。在频率调制中,电磁波的频率随时间线性增加。或者说,发射频率会以恒定速率改变。这种频率随着时间线性增加的信号被称为chirp。FMCW系统测量发射信号和反射信号频率的瞬时差异δf,这直接和反射的chirp的时间差成比例。这个时间差能用来计算目标的距离。

        下图(左)显示了一个chirp频率随时间变化的表现,右边显示频率随时间线性增加的chirp的幅度随时间变化图。

        雷达前面的单目标产生的中频信号是一个固定频率音调,这个频率由下式给出:

IF(frequency) = 2S*d / c

        这里d是目标到雷达的距离,单位m,c是光速,m/s,S是chirp斜率,由chirp持续时间内带宽的变化率得到。因此,我们可以对中频信号做FFT得到频率,再通过测量频率来计算距离。

第2部分:Python仿真

第1步: 雷达参数设置,这一步会设置雷达系统的基本参数

maxR = 200                                  # Maximum range
rangeRes = 1                                # Range resolution
maxV = 70                                   # Maximum speed
fc = 77e9                                   # Carrier frequency
c = 3e8                                     # Speed of light

r0 = 100                                    # Target distance
v0 = 70                                     # Target speed

B = c/(2*rangeRes)                          # Bandwidth
Tchirp = 5.5*2*maxR/c                       # Chirp time
endle_time = 6.3e-6                         
slope = B/Tchirp                            # Chirp slope
f_IFmax = (slope*2*maxR)/c                  # Maximum IF frequency
f_IF = (slope*2*r0)/c                       # Current IF frequency

Nd = 128                                    # Number of chirp
Nr = 1024                                   # Number ADC sampling points
vres = (c/fc)/(2*Nd*(Tchirp + endle_time))  # Speed resolution
Fs = Nr/Tchirp                              # Sampling rate

第2步: 发射信号, 假设发射的是cos信号,频率随时间线性变化

t = np.linspace(0, Nd*Tchirp, Nr*Nd)        # Time of Tx and Rx
angle_freq = fc*t+(slope*t*t)/2             # Tx signal angle speed
freq = fc + slope * t                       # Tx frequency
Tx = np.cos(2*np.pi*angle_freq)             # Waveform of Tx
plt.subplot(3,3,1)
plt.plot(t[0:Nr],Tx[0:Nr])
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.title('Tx Signal')
plt.subplot(3,3,2)
plt.plot(t[0:Nr],freq[0:Nr])
plt.xlabel('Time')
plt.ylabel('Frequency')
plt.title('Tx F-T')

r0 = r0 + v0*t

第3步: 接收信号, 接收波形可以从发射波形和时延计算

td = 2*r0/c    
tx = t 
freqRx = fc + slope*(t)
Rx = np.cos(2*np.pi*(fc*(t-td) + (slope*(t-td)*(t-td))/2)) 
plt.subplot(3,3,3)
plt.plot(t[0:Nr],Rx[0:Nr])
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.title('Rx Signal')
plt.subplot(3,3,4)
plt.plot(t[0:Nr]+td[0:Nr],freqRx[0:Nr])
plt.xlabel('Time')
plt.ylabel('Frequency')
plt.title('Chirp F-T')

第4步: 中频信号,根据处理,假设中频信号可以用cos((2*pi*wt*t-2*pi*wr*t))表示

IF_angle_freq = fc*t+(slope*t*t)/2 - ((fc*(t-td) + (slope*(t-td)*(t-td))/2))
freqIF = slope*td
IFx = np.cos(-(2*np.pi*(fc*(t-td) + (slope*(t-td)*(t-td))/2)) + (2*np.pi*angle_freq))
plt.subplot(3,3,5)
plt.plot(t[0:Nr],IFx[0:Nr])
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.title('IFx Signal')

第5步: 中频信号FFT, 这一步, 我们通过对中频信号做FFT计算中频信号的频率

doppler = 10*np.log10(np.abs(np.fft.fft(IFx[0:Nr])))
frequency = np.fft.fftfreq(Nr, 1/Fs)
range = frequency*c/(2*slope)
plt.subplot(3,3,6)
plt.plot(range[0:int(Nr/2)],doppler[0:int(Nr/2)])
plt.xlabel('Frequency->Distance')
plt.ylabel('Amplitude')
plt.title('IF Signal FFT')

第6步: 时间频谱图, 这一步, 计算频谱随时间变化图

# 2D plot
plt.subplot(3,3,7)
plt.specgram(IFx,Nr,Fs)
plt.xlabel('Time')
plt.ylabel('Frequency')
plt.title('Spectogram')

        我们可以看到,在单个帧周期内,由于目标位移引起的中频信号频率变化在频谱图中很难区分,因此我们需要通过相位变化来检测小的位移和速度。

第2章

第1部分:速度检测原理

        如第1章末尾所说,小尺度移动很难由距离频率关系检测,如下图所示,在帧周期内,不能在频谱中找到明显的移动。另外,如果多个目标在相同的距离,我们不能通过距离频率关系区分他们,因为他们在频谱中有着相同的中频频率。然而,我们可以通过测量中频信号的相位变化来检测这些小尺度移动,区分不同的目标。通过相位变化做速度估计的基本想法如下所示:

第1步: 速度维度数据提取

        每个chirp提取一个采样点,对于Nd个chirp的帧,将会有Nd个点的列表。

chirpamp = []
chirpnum = 1
while(chirpnum <= Nd):
    start = (chirpnum - 1)*Nr
    end = chirpnum*Nr
    chirpamp.append(IFx[start])
    chirpnum = chirpnum + 1

第2步: 对相位变化和速度做速度维度FFT

doppler = 10*np.log10(np.abs(np.fft.fft(chirpamp)))
FFTfrequency = np.fft.fftfreq(Nd,1/Fs)
velocity = 5*np.arange(0,Nd)/3
plt.subplot(3,3,8)
plt.plot(velocity[0:int(Nd/2)],doppler[0:int(Nd/2)])
plt.xlabel('Velocity')
plt.ylabel('Amplitude')
plt.title('IF Velocity FFT')

第3步:2维FFT和速度距离关系

mat2D = np.zeros((Nd,Nr))
i = 0
while(i < Nd):
    mat2D[i,:] = IFx[i*Nr:(i+1)*Nr]
    i = i + 1
# plt.matshow(mat2D)
# plt.title('Original data')
Z_fft2 = abs(np.fft.fft2(mat2D))
Data_fft2 = Z_fft2[0:int(Nd/2),0:int(Nr/2)]
plt.subplot(3,3,9)
plt.imshow(Data_fft2)
plt.xlabel('Range')
plt.ylabel('Velocity')
plt.title('Velocity-Range 2D FFT')

        然后,设置结果显示和图片保存,就能得到仿真结果了。

plt.tight_layout(pad=3,w_pad=0.05,h_pad=0.05)
#plt.savefig('simulate.png', bbox_inches='tight', pad_inches=0.3)   # 紧凑型,留白较少
plt.show()

      

         最后,别忘了代码最开始导入库文件,这样才能保证代码运行正常。

import numpy as np
import matplotlib.pyplot as plt
from numpy import fft
from mpl_toolkits.mplot3d import Axes3D

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1276423.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C#,数值计算——插值和外推,谢别德(Shep)插值方法的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// 谢别德插值方法 /// Object for Shepard interpolation using n points in dim dimensions. Call /// constructor once, then interp as many times as desired. /// &…

nodejs微信小程序+python+PHP金融产品销售系统的设计与实现-计算机毕业设计推荐

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性&#xff1a;…

NSDT场景编辑器实现真数字孪生

在线工具推荐&#xff1a; 三维数字孪生场景工具 - GLTF/GLB在线编辑器 - Three.js AI自动纹理化开发 - YOLO 虚幻合成数据生成器 - 3D模型在线转换 - 3D模型预览图生成服务 1、什么是数字孪生&#xff1f; 数字孪生是资产或系统的实时虚拟模型&#xff0c;它使用来自连…

15、 深度学习之正向传播和反向传播

上一节介绍了训练和推理的概念,这一节接着训练和推理的概念讲一下,神经网络的正向传播和反向传播。 其实单看正向传播和反向传播这两个概念,很好理解。 正向传播(Forward Propagation)是指从输入层到输出层的数据流动过程,而反向传播(Backpropagation)是指数据从输出…

Unity | 渡鸦避难所-0 | 创建 URP 项目并导入商店资源

0 前言 知识点零零碎碎&#xff0c;没有目标&#xff0c;所以&#xff0c;一起做游戏吧 各位老师如果有什么指点、批评、漫骂、想法、建议、疑惑等&#xff0c;欢迎留言&#xff0c;一起学习 1 创建 3D&#xff08;URP&#xff09;项目 在 Unity Hub 中点击新项目&#xff…

L1-006:连续因子

题目描述 一个正整数 N 的因子中可能存在若干连续的数字。例如 630 可以分解为 3567&#xff0c;其中 5、6、7 就是 3 个连续的数字。给定任一正整数 N&#xff0c;要求编写程序求出最长连续因子的个数&#xff0c;并输出最小的连续因子序列。 输入格式&#xff1a; 输入在一行…

腾讯云避坑——无法远程root登录

因为各种原因&#xff0c;最近需要使用腾讯云来代替阿里云。 但在ubuntu18/20的服务器中&#xff0c;我使用另一个电脑试图用scp命令来拷贝服务器中的一些文件&#xff0c;命令为: scp root服务器ip:文件目录 本地目录但一直显示密码错误。 原因是腾讯云ubuntu系统在创建时并不…

Node-red入门设计-时序信号输出

Note-red入门设计 - 时序信号输出 Note-red环境 打开Note-red 通过运行栏输入powershell&#xff0c;使用管理员权限运行后&#xff0c;执行如下命令&#xff1a; note-red运行note-red的指令&#xff0c;将输入如下内容&#xff1a; 此时&#xff0c;在浏览器界面录入相应…

PgSQL技术内幕 • statement_timeout做的那些事

PgSQL技术内幕 • statement_timeout做的那些事 statement_timeout是Postgres种的一个配置参数&#xff0c;用于指定SQL语句执行的超时时间&#xff0c;当超时时就取消该SQL的执行&#xff0c;并返回错误信息。这个参数通常用于控制运行时间较长的查询&#xff0c;避免影响数据…

利用 NRF24L01 无线收发模块实现传感器数据的无线传输

NRF24L01 是一款常用的无线收发模块&#xff0c;适用于远程控制和数据传输应用。本文将介绍如何利用 NRF24L01 模块实现传感器数据的无线传输&#xff0c;包括硬件的连接和配置&#xff0c;以及相应的代码示例。 一、引言 NRF24L01 是一款基于 2.4GHz 射频通信的低功耗无线收发…

第九节HarmonyOS 常用基础组件-Text

一、组件介绍 组件&#xff08;Component&#xff09;是界面搭建与显示的最小单位&#xff0c;HarmonyOS ArkUI声名式为开发者提供了丰富多样的UI组件&#xff0c;我们可以使用这些组件轻松的编写出更加丰富、漂亮的界面。 组件根据功能可以分为以下五大类&#xff1a;基础组件…

API成批分配漏洞介绍与解决方案

一、API成批分配漏洞介绍 批量分配&#xff1a;在API的业务对象或数据结构中&#xff0c;通常存在多个属性&#xff0c;攻击者通过篡改属性值的方式&#xff0c;达到攻击目的。比如通过设置user.is_admin和user.is_manager的值提升用户权限等级&#xff1b;假设某API的默认接口…

Mapper文件夹在resource目录下但是网页报错找不到productMapper.xml文件的解决

报错如下&#xff1a; 我的Mapper文件夹在resourse目录下但是网页报错找不到productMapper.xml。 结构如下&#xff1a;代码如下&#xff1a;<mappers><mapper resource"com/dhu/mapper/productMapper.xml" /> </mappers> 这段代码是在mybatis-co…

html实现各种好看的鼠标滑过图片特效模板

文章目录 1.鼠标悬浮效果1.1 渐动效果1.2 渐变效果1.3 边框效果1.4 线行效果1.5 图标效果1.6 块状效果1.7 边线效果1.8 放大效果1.9 渐出效果1.10 痕迹效果1.11 交叉效果1.12 着重效果1.13 详展效果1.14 能动效果1.15 明细效果 2.主要源码2.1 源代码 源码下载 作者&#xff1a;…

windows系统如何配置yarn环境变量

启动前端项目&#xff0c;突然遇到报错&#xff1a; 原因在于没有安装yarn&#xff0c;或没有配置环境变量。 全局安装 yarn 可在vsCode中输入&#xff0c;也可在命令行输入&#xff08;winR&#xff0c;输入cmd&#xff09; npm install -g yarn添加环境变量 找到yarn的安…

【算法】单调栈题单——字典序最小⭐(一种类型的模板题)

文章目录 题目列表316. 去除重复字母⭐⭐⭐⭐⭐&#xff08;类型题模板&#xff1a;单调栈&#xff0c;字典序最小&#xff09;221021天池-03. 整理书架&#xff08;保留数量为 limit 的字典序最小&#xff09;402. 移掉 K 位数字&#xff08;最多删除 k 次 前导零的处理&…

从0开始学习JavaScript--JavaScript 单元测试

JavaScript单元测试是保障代码质量和可维护性的关键步骤之一。通过编写和运行单元测试&#xff0c;开发者可以确保代码在不断迭代的过程中依然具有正确的行为。本文将深入探讨JavaScript单元测试的核心概念、工具使用和最佳实践&#xff0c;并通过丰富的示例代码演示其实际应用…

mac 系统 vmware 安装centos8

选择镜像 安装系统 依次设置有告警的项目 设置用户名密码 设置root密码 重启系统 重启成功进入下面界面 勾选&#xff0c;点击done 点击箭头所指按钮 输入密码登录 安装成功了 设置网络 打开终端 切换root用户 输入下面指令 su root 输入root的密码 安装git

振动温度一体式传感器的工作原理及其在设备状态监测中的作用

振动温度一体式传感器是一种先进的监测设备&#xff0c;可以同时测量和监测目标物体的振动和温度信息。它结合了振动传感技术和温度传感技术&#xff0c;为工业领域提供了全面而高效的设备状态监测解决方案。在振动温度一体式传感器中&#xff0c;有线和无线两种类型分别在设备…

[github全教程]github版本控制最全教学------- 大厂找工作面试必备!

作者&#xff1a;20岁爱吃必胜客&#xff08;坤制作人&#xff09;&#xff0c;近十年开发经验, 跨域学习者&#xff0c;目前于新西兰奥克兰大学攻读IT硕士学位。荣誉&#xff1a;阿里云博客专家认证、腾讯开发者社区优质创作者&#xff0c;在CTF省赛校赛多次取得好成绩。跨领域…