激光SLAM:Faster-Lio 算法编译与测试

news2025/1/12 17:33:27

激光SLAM:Faster-Lio 算法编译与测试

  • 前言
  • 编译
  • 测试
    • 离线测试
    • 在线测试

前言

Faster-LIO是基于FastLIO2开发的。FastLIO2是开源LIO中比较优秀的一个,前端用了增量的kdtree(ikd-tree),后端用了迭代ESKF(IEKF),流程短,计算快。Faster-LIO则把ikd-tree替换成了iVox,顺带优化了一些代码逻辑,实现了更快的LIO。在典型的32线激光雷达中可以取得100-200Hz左右的计算频率,在固态雷达中甚至可以达到1000-2000Hz,能够达到FastLIO2的1.5-2倍左右的速度。当然具体数值和计算平台相关。

FasterLIO使用了一种基于稀疏体素的近邻结构iVox(incremental voxels)。我们会发现这种结构用来做LIO更加合适,可以有效的降低点云配准时的耗时,也不会影响LIO的精度表现。

iVox也可以被集成到其他LO或LIO里,但是大部分方案里,最近邻并不是主要的计算瓶颈,gtsam/ceres什么的耗时相比最近邻那可太多了。把iVox集成到Lego-LOAM里,、主要只是省了增量地图构建那部分时间,优化方面没什么变化(点少)。所以iVox与FastLIO倒是相性更好一些。

编译

部署系统:ubuntu20.04
ROS版本: noetic

github 地址:https://github.com/gaoxiang12/faster-lio

下载源码

git clone https://github.com/gaoxiang12/faster-lio

正克隆到 ‘faster-lio’…
remote: Enumerating objects: 224, done.
remote: Counting objects: 100% (108/108), done.
remote: Compressing objects: 100% (43/43), done.
remote: Total 224 (delta 76), reused 65 (delta 65), pack-reused 116
接收对象中: 100% (224/224), 38.13 MiB | 1.49 MiB/s, 完成.
处理 delta 中: 100% (97/97), 完成.

在这里插入图片描述

将原文件拷入ros工作空间

依赖

  • ROS (melodic or noetic)
  • glog: sudo apt-get install libgoogle-glog-dev
  • eigen: sudo apt-get install libeigen3-dev
  • pcl: sudo apt-get install libpcl-dev
  • yaml-cpp: sudo apt-get install libyaml-cpp-dev

编译

catkin_make

报错1:

CMake Error at /home/jk-jone/jone_ws/build/livox_ros_driver/livox_ros_driver/cmake/livox_ros_driver-genmsg.cmake:14 (add_custom_target):
add_custom_target cannot create target “livox_ros_driver_generate_messages”
because another target with the same name already exists. The existing
target is a custom target created in source directory
“/home/jk-jone/jone_ws/src/faster-lio/thirdparty/livox_ros_driver”. See
documentation for policy CMP0002 for more details.
Call Stack (most recent call first):
/opt/ros/noetic/share/genmsg/cmake/genmsg-extras.cmake:307 (include)
livox_ros_driver/livox_ros_driver/CMakeLists.txt:46 (generate_messages)

在这里插入图片描述
如果工作空间中之前编译了 livox_ros_driver 的功能包,则需要删掉 faster-lio/thirdparty/livox_ros_driver 这个文件夹

再次编译

CMake Error at faster-lio/CMakeLists.txt:15 (add_subdirectory):
add_subdirectory given source “thirdparty/livox_ros_driver” which is not an
existing directory.

在这里插入图片描述电锯惊魂10
因为把那个文件删了,所以找不到路径

将 faster-lio/CMakeLists.txt 文件的第15行注释掉

add_subdirectory(thirdparty/livox_ros_driver)
改为
#add_subdirectory(thirdparty/livox_ros_driver)

再次编译

[100%] Linking CXX shared library /home/jk-jone/jone_ws/devel/lib/libfaster_lio.so
[100%] Built target faster_lio
Scanning dependencies of target run_mapping_offline
Scanning dependencies of target run_mapping_online
[100%] Building CXX object faster-lio/app/CMakeFiles/run_mapping_online.dir/run_mapping_online.cc.o
[100%] Building CXX object faster-lio/app/CMakeFiles/run_mapping_offline.dir/run_mapping_offline.cc.o
[100%] Linking CXX executable /home/jk-jone/jone_ws/devel/lib/faster_lio/run_mapping_online
[100%] Built target run_mapping_online
[100%] Linking CXX executable /home/jk-jone/jone_ws/devel/lib/faster_lio/run_mapping_offline
[100%] Built target run_mapping_offline

在这里插入图片描述

编译成功

测试

Faster-lio支持离线的测试与在线测试

离线测试

首先下载rosbag数据包到电脑

  • avia bags
  • nclt bags

百度云盘下载地址:
BaiduYun: https://pan.baidu.com/s/1ELOcF1UTKdfiKBAaXnE8sQ?pwd=feky access code: feky
OneDrive下载地址:
OneDrive:https://1drv.ms/u/s!AgNFVSzSYXMahcEZejoUwCaHRcactQ?e=YsOYy2

Call run_mapping_offline with parameters to specify the bag file and the config file like:
通过下面的指令 运行 run_mapping_offline 文件 并且加载对应的rosbag文件 和对应的配置文件

./build/devel/lib/faster_lio/run_mapping_offline --bag_file your_avia_bag_file --config_file ./config/avia.yaml

其中 your_avia_bag_file 路径需要更换为下载的数据包路径

同样对于nclt数据包可以运行下面的指令。数据是机械式激光雷达velodyne的数据

./build/devel/lib/faster_lio/run_mapping_offline --bag_file your_nclt_bag_file --config_file ./config/velodyne.yaml

your_nclt_bag_file 路径需要更换为下载的数据包路径

运行FasterLIO,然后退出的时候 会在终端打印FPS和time

像下面这样:

I0216 17:16:05.286536 26492 run_mapping_offline.cc:89] Faster LIO average FPS: 1884.6
I0216 17:16:05.286549 26492 run_mapping_offline.cc:91] save trajectory to: ./src/fast_lio2/Log/faster_lio/20120615.tum
I0216 17:16:05.286706 26492 utils.h:52] >>> ===== Printing run time =====
I0216 17:16:05.286711 26492 utils.h:54] > [     IVox Add Points ] average time usage: 0.0147311 ms , called times: 6373
I0216 17:16:05.286721 26492 utils.h:54] > [     Incremental Mapping ] average time usage: 0.0271787 ms , called times: 6373
I0216 17:16:05.286731 26492 utils.h:54] > [     ObsModel (IEKF Build Jacobian) ] average time usage: 0.00745852 ms , called times: 25040
I0216 17:16:05.286752 26492 utils.h:54] > [     ObsModel (Lidar Match) ] average time usage: 0.0298004 ms , called times: 25040
I0216 17:16:05.286775 26492 utils.h:54] > [ Downsample PointCloud ] average time usage: 0.0224052 ms , called times: 6373
I0216 17:16:05.286784 26492 utils.h:54] > [ IEKF Solve and Update ] average time usage: 0.342008 ms , called times: 6373
I0216 17:16:05.286792 26492 utils.h:54] > [ Laser Mapping Single Run ] average time usage: 0.530618 ms , called times: 6387
I0216 17:16:05.286800 26492 utils.h:54] > [ Preprocess (Livox) ] average time usage: 0.0267813 ms , called times: 6387
I0216 17:16:05.286808 26492 utils.h:54] > [ Undistort Pcl ] average time usage: 0.0810455 ms , called times: 6375
I0216 17:16:05.286816 26492 utils.h:59] >>> ===== Printing run time end =====

默认点云会以pcd文件的格式保存下来

在线测试

用之前建立的仿真环境下的 mid360雷达的数据进行一个初步在线测试

打开仿真环境
在这里插入图片描述

faster-lio 里面没有 mid360 雷达的 配置文件和启动文件 ,有avia的,都是livox的固态雷达,基本雷达,仿照avia的写一个就行

mid360.yaml 如下

common:
    lid_topic:  "/livox/lidar"
    imu_topic:  "/livox/imu"
    time_sync_en: false         # ONLY turn on when external time synchronization is really not possible
    time_offset_lidar_to_imu: 0.0 # Time offset between lidar and IMU calibrated by other algorithms, e.g. LI-Init (can be found in README).
                                  # This param will take effect no matter what time_sync_en is. So if the time offset is not known exactly, please set as 0.0

preprocess:
    lidar_type: 1                # 1 for Livox serials LiDAR, 2 for Velodyne LiDAR, 3 for ouster LiDAR, 
    scan_line: 4
    blind: 0.5

mapping:
    acc_cov: 0.1
    gyr_cov: 0.1
    b_acc_cov: 0.0001
    b_gyr_cov: 0.0001
    fov_degree:    360
    det_range:     100.0
    extrinsic_est_en:  false      # true: enable the online estimation of IMU-LiDAR extrinsic
    extrinsic_T: [ -0.011, -0.02329, 0.04412 ]
    extrinsic_R: [ 1, 0, 0,
                   0, 1, 0,
                   0, 0, 1]

publish:
    path_en:  false
    scan_publish_en:  true       # false: close all the point cloud output
    dense_publish_en: true       # false: low down the points number in a global-frame point clouds scan.
    scan_bodyframe_pub_en: true  # true: output the point cloud scans in IMU-body-frame

pcd_save:
    pcd_save_en: true
    interval: -1                 # how many LiDAR frames saved in each pcd file; 
                                 # -1 : all frames will be saved in ONE pcd file, may lead to memory crash when having too much frames.

launch文件如下

<launch>
<!-- Launch file for Livox MID360 LiDAR -->

	<arg name="rviz" default="true" />

	<rosparam command="load" file="$(find fast_lio)/config/mid360.yaml" />

	<param name="feature_extract_enable" type="bool" value="0"/>
	<param name="point_filter_num_" type="int" value="3"/>
	<param name="max_iteration" type="int" value="3" />
	<param name="filter_size_surf" type="double" value="0.5" />
	<param name="filter_size_map" type="double" value="0.5" />
	<param name="cube_side_length" type="double" value="1000" />
	<param name="runtime_pos_log_enable" type="bool" value="1" />
    <node pkg="faster_lio" type="run_mapping_online" name="laserMapping" output="screen" /> 

	<group if="$(arg rviz)">
	<node launch-prefix="nice" pkg="rviz" type="rviz" name="rviz" args="-d $(find faster_lio)/rviz_cfg/loam_livox.rviz" />
	</group>

</launch>

运行该launch文件

roslaunch faster_lio mapping_mid360.launch

初始位置的情景和点云模型
在这里插入图片描述
飞一圈后整个地图模型
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1276131.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

7、单片机与W25Q128(FLASH)的通讯(SPI)实验(STM32F407)

SPI接口简介 SPI 是英语Serial Peripheral interface的缩写&#xff0c;顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。 SPI&#xff0c;是一种高速的&#xff0c;全双工&#xff0c;同步的通信总线&#xff0c;并且在芯片的管脚上只占用四根…

【学习记录】从0开始的Linux学习之旅——应用开发(helloworld)

一、概述 Linux操作系统通常是基于Linux内核&#xff0c;并结合GNU项目中的工具和应用程序而成。Linux操作系统支持多用户、多任务和多线程&#xff0c;具有强大的网络功能和良好的兼容性。本文主要讲述如何在linux系统上进行应用开发。 二、概念及原理 应用程序通过系统调用与…

理解BatchNormalization层的作用

深度学习 文章目录 深度学习前言一、“Internal Covariate Shift”问题二、BatchNorm的本质思想三、训练阶段如何做BatchNorm四、BatchNorm的推理(Inference)过程五、BatchNorm的好处六、机器学习中mini-batch和batch有什么区别 前言 Batch Normalization作为最近一年来DL的重…

漏洞复现--Tenda路由器DownloadCfg信息泄露

免责声明&#xff1a; 文章中涉及的漏洞均已修复&#xff0c;敏感信息均已做打码处理&#xff0c;文章仅做经验分享用途&#xff0c;切勿当真&#xff0c;未授权的攻击属于非法行为&#xff01;文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直…

IntelliJ IDEA创建springboot项目时不能选择java8的问题解决方案

最近博主也有创建springboot项目&#xff0c;发现了IntelliJ IDEA在通过Spring Initilizer初始化项目的时候已经没有java8版本的选项了。 基于这个问题&#xff0c;有了这篇文章的分享&#xff0c;希望能够帮助大家克服这个困难。 如图&#xff0c;现在创建springboot项目的时…

BLIoTLink工业协议转换软件功能和使用教程

1.功能简介 BLIoTLink 是一款各种 PLC 协议、Modbus RTU 、Modbus TCP、DL/T645 等多 种协议转换为 Modbus TCP、OPC UA、MQTT、BACnet IP、华为云 IoT、亚 马逊云 IoT、阿里云 IoT、ThingsBoard、钡铼云 IoT 等协议的软件。 BLIoTLink 下行支持&#xff1a;各种 PLC 协议、Mod…

ES6知识

作用域 局部作用域 局部作用域分为函数作用域和块作用域 函数作用域 在函数内部声明的变量只能在函数内部被访问&#xff0c;外部无法直接访问。函数的参数也是函数内部的局部变量。不同函数内部声明的变量无法互相访问。函数执行完毕后&#xff0c;函数内部的变量实际被清空…

【代码】考虑差异性充电模式的电动汽车充放电优化调度matlab-yalmip-cplex/gurobi

程序名称&#xff1a;考虑差异性充电模式的电动汽车充放电优化调度 实现平台&#xff1a;matlab-yalmip-cplex/gurobi 代码简介&#xff1a;提出了一种微电网中电动汽车的协调充电调度方法&#xff0c;以将负荷需求从高峰期转移到低谷期。在所提出的方法中&#xff0c;基于充…

(一)Tiki-taka算法(TTA)求解无人机三维路径规划研究(MATLAB)

一、无人机模型简介&#xff1a; 单个无人机三维路径规划问题及其建模_IT猿手的博客-CSDN博客 参考文献&#xff1a; [1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120 二、Tiki-taka算法&#xff08;TTA&#xf…

AutoDL 使用记录

AutoDL 使用记录 1.租用新实例 创建实例需要依次选择&#xff1a;计费方式 → \to → 地区 → \to → GPU型号与数量 → \to → 主机 注意事项&#xff1a; 主机 ID&#xff1a;一个吉利的机号有助于炼丹成功价格&#xff1a;哪个便宜选哪个最高 CUDA 版本&#xff1a;影响…

操作系统-输入输出管理

I/O设备的基本概念和分类 I/O就是输入/输出 I/O设备就是可以将数据输入到计算机&#xff0c;或者可以接收计算机输出数据的外部设备&#xff0c;属于计算机中的硬件部件。 I/O设备按使用特性分类 人机交互类外部设备存储设备网络通信设备 I/O设备按传输速率分类 低速设备中…

小米智能摄像头mp4多碎片手工恢复案例

小米智能摄像头mp4多碎片手工恢复案例 智能摄像头目前在市场上极为常见&#xff0c;仅需要一张存储卡即可实现视频、音频的采集&#xff0c;同时可以通过手机APP进行远程控制&#xff0c;相比传统安防品牌成本更低、更容易部署。在智能摄像头品牌中小米算是绝对的大厂&#xf…

HTTP协议、Java前后端交互、Servlet

文章目录 抓包工具 FiddlerHTTP 请求和响应结构URL 唯一资源定位符HTTP 协议中的方法请求报头&#xff08;header&#xff09;HTTP响应构造 HTTP 请求基于 form 标签基于 ajax使用 Postman HTTPS和 HTTP 的区别对称密钥和非对称密钥数字证书 TomcatServlet创建 Maven 项目引入依…

SSM框架(四):SSM整合 案例 + 异常处理器 +拦截器

文章目录 一、整合流程图1.1 Spring整合Mybatis1.2 Spring整合SpringMVC 二、表现层数据封装2.1 问题引出2.2 统一返回结果数据格式 代码设计 三、异常处理器3.1 概述3.2 异常处理方案 四、前端五、拦截器5.1 概念5.2 入门案例5.3 拦截器参数5.4 拦截器链 一、整合流程图 1.1 S…

2.qml 3D-View3D类学习

本章我们来学习View3D类。 View3D是用来渲染3D场景并显示在2D平面的类&#xff0c;并且该类可以放在QML2D下继承于Item子类的任何场景中&#xff0c;比如将View3D放在Rectangle中: Rectangle {width: 200 height: 200color: "red"View3D { anchors.fill: parent…

STM32CubeIDE(CUBE-MX hal库)----蓝牙模块HC-05(详细配置)

系列文章目录 STM32CubeIDE(CUBE-MX hal库)----初尝点亮小灯 STM32CubeIDE(CUBE-MX hal库)----按键控制 STM32CubeIDE(CUBE-MX hal库)----串口通信 STM32CubeIDE(CUBE-MX hal库)----定时器 文章目录 系列文章目录前言一、蓝牙配置二、CUBE-MX可视化配置三、蓝牙APP调试助手四、…

mysql在linux环境下安装(rpm)以及初始化后的登录配置

注&#xff1a;该安装步骤转载于CSDN,下方配置为原创 按照图片安装并初始化完成MySQL等操作后进行&#xff1b; 安装对于rpm包集合 1-查看安装情况&#xff08;有4个路径&#xff09; whereis mysql 2-查看服务状态 systemctl status mysql 3-初始化数据库 mysqld --initial…

6.5 Windows驱动开发:内核枚举PspCidTable句柄表

在 Windows 操作系统内核中&#xff0c;PspCidTable 通常是与进程&#xff08;Process&#xff09;管理相关的数据结构之一。它与进程的标识和管理有关&#xff0c;每个进程都有一个唯一的标识符&#xff0c;称为进程 ID&#xff08;PID&#xff09;。与之相关的是客户端 ID&am…

【蓝桥杯选拔赛真题71】Scratch绘制彩虹 少儿编程scratch图形化编程 蓝桥杯创意编程选拔赛真题解析

目录 scratch绘制彩虹 一、题目要求 编程实现 二、案例分析 1、角色分析

Python+Requests对图片验证码的处理

Requests对图片验证码的处理 在web端的登录接口经常会有图片验证码的输入&#xff0c;而且每次登录时图片验证码都是随机的&#xff1b;当通过request做接口登录的时候要对图片验证码进行识别出图片中的字段&#xff0c;然后再登录接口中使用&#xff1b; 通过request对图片验…