这里写目录标题
- 论文阅读
- 摘要
- 介绍
- 方法
- overview
- why use wavelet transform?
- 融合方法
- 用于全监督分割和半监督分割可行性分析
- 效果
- 局限性
- 总结
- 代码跑通
- 去掉分布式训练
- 生成低频和高频图片
- 产生数据集
- 改读取数据的位置
- 损失函数
- 添加自己数据集的信息
- 结果
ps:我现在不知道自己研究方向是做什么的,就是分割也试试,医疗诊断也试试。然后之后更的尽量把代码跑通也写上。因为之前代码水平有限不能很好的跑通,然后我只是说我这个数据集怎么改,以及我这个硬件水平下,你们看着改就可以。
论文地址
代码地址
论文阅读
摘要
现状:
- 把全监督分割和半监督当作两种训练方式,很少有把它们统一起来的。(本文就把这两个统一起来了,就是个创新点)
- 很少有完全监督的模型关注图像的固有的低频信息和高频信息去提升性能。
- 半监督学习的扰动是人为添加的,可能引入不利的学习偏见。
方法:
提出了一种基于小波的LF和HF融合模型XNet,它支持全监督和半监督语义分割,并在这两个领域都优于最先进的模型。
介绍
启发:对于语义分割问题,HF信息通常表示图像细节,LF信息通常是抽象与一。提取和融合不同频率信息的策略可以帮助模型更好地关注LF予以和HF细节,以提高性能。模型使用小波变换生成LF和HF图像,用于基于一致性差分的半监督学习。这些一致性差异源于对LF和HF信息的不同关注,这缓解了人工设计造成的学习偏差。
contributions:
- 提出了低频和高频融合模型XNet,在有监督和半监督上实现了优异的性能。
- XNet使用小波变化生成LF和HF图片来进行一致性学习,可以减轻人为扰动引起的学习偏差。
- 在两个2D和两个3D公共生物医学数据集上进行的广泛基准测试证实了XNet的有效性。
方法
overview
获取相应的LF和HF图片。然后将它们输入到LF和HF编码器以分别生成LF(语义)和HF(边缘、纹理)特征。之后使用融合模块对他们的特征进行融合。然后把融合特征放到解码器中获得LF和HF分支的预测结果。全监督损失是监督损失(两个分支的预测和真实值之间的损失,记为
L
s
u
p
L_{sup}
Lsup)和标记图像的一致性损失(记为
L
u
n
s
u
p
L_{unsup}
Lunsup)。半监督训练,最大限度减少标记图像的监督损失和未标记图像的双重输出的一致性损失。都是dice loss。
L
u
n
s
u
p
L_{unsup}
Lunsup是由交叉伪标签监督损失实现,用一个分支的预测作为伪标签去监督另一个分支。
L
u
n
s
u
p
=
L
u
n
s
u
p
H
(
p
i
L
,
p
^
i
H
)
+
L
u
n
s
u
p
L
(
p
i
H
,
p
^
i
L
)
L_{unsup}=L_{unsup}^{H}(p^L_{i},\hat{p}^H_{i})+L_{unsup}^{L}(p^H_{i},\hat{p}^L_{i})
Lunsup=LunsupH(piL,p^iH)+LunsupL(piH,p^iL)
我们选择在训练阶段表现更好的分支作为推理过程中的最终输出。
why use wavelet transform?
与其他方法(如傅立叶变换)相比,小波变换是生成L和H的有效方法。使用L作为输入,XNet可以更多地关注LF语义,因为L具有较少的噪声和细节。相比之下,H具有更多的噪声,但对象边界更清晰,这可以帮助模型更多地关注HF细节。此外,使用L和H进行半监督训练,一致性差异来自图像的固有LF和HF信息,这可以缓解人工扰动引起的学习偏差。
融合方法
LF和HF融合模块的架构。相同大小Conv表示输出和输入特征具有相同大小。下采样Conv将输出特征的大小减少一半。上采样Conv使输出特征的大小加倍。Transition Conv使用信道级联特征作为输入和输出融合特征。
就是LF Feature1是第4层的feature,它进行一次不改变大小的卷积得到第一个有花纹的蓝色块也就是特征,它进行一次下采样得到下面那个小的特征。LF Feature2是第5层的feature,它进行一次上采样得到横杠的看色特征,进行一次不改变大小的卷积得到方块特征。其他同理,结合之后进行卷积获得和原来LF Feature1相同大小的特征图,然后进行U-Net那个skip connect即可。
用于全监督分割和半监督分割可行性分析
对于生物医学图像,我们假设原始图像I由LF特征FL、HF特征FH、LF加性噪声NL和HF加性噪声NH组成。因此,
I
I
I被定义为:
I
=
F
L
+
F
H
+
N
L
+
N
H
I = F_L+F_H+N_L+N_H
I=FL+FH+NL+NH
因为生物医学图像中的噪声通常是加性的。对于语义分割问题,准确的分割需要LF语义(如形状、颜色等)和HF细节(如边缘、纹理等)。
对于监督学习,对完整信息进行解码可以获得分割预测。对于半监督学习,由于每个解码分支对LF和HF信息的关注程度不同,因此双分支解码器的预测在LF语义和HF细节方面存在差异。这些差异可用于基于一致性规则的半监督训练。
总之,XNet既可以用于全监督学习,也可以用于半监督学习。图显示了XNet分割过程的拓扑流程图。
效果
局限性
由于XNet强调HF信息,当图像几乎没有HF信息时,XNet的性能会受到负面影响。
总结
我们提出了一种基于小波的低频和高频融合模型XNet,该模型在生物医学图像的全监督和半监督语义分割方面都取得了最先进的性能。在2D和3D数据集上进行的大量实验证明了我们提出的模型的有效性。然而,XNet的局限性在于,当高频信息不可用时,其性能可能会受到负面影响。我们认为,完全监督和半监督的语义分割模型可以而且应该是统一的。我们希望我们的研究能为它们的统一提供一些例证和思考。
代码跑通
完全可以按作者的那个readme对自己数据集进行修改跑通。
我不了解分布式训练,所以一直报错。下面展示不用分布式训练的代码。
去掉分布式训练
下面是我把有分布式训练的地方都删了。(应该问题不大吧。(lll¬ω¬))
from torchvision import transforms, datasets
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
from torch.utils.data import DataLoader
import argparse
import time
import os
import numpy as np
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
from torch.backends import cudnn
import random
from config.dataset_config.dataset_cfg import dataset_cfg
from config.train_test_config.train_test_config import print_train_loss_XNet, print_val_loss, print_train_eval_XNet, print_val_eval, save_val_best_2d, draw_pred_XNet, print_best
from config.visdom_config.visual_visdom import visdom_initialization_XNet, visualization_XNet, visual_image_XNet
from config.warmup_config.warmup import GradualWarmupScheduler
from config.augmentation.online_aug import data_transform_2d, data_normalize_2d
from loss.loss_function import segmentation_loss
from models.getnetwork import get_network
from dataload.dataset_2d import imagefloder_iitnn
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--path_trained_models', default='./checkpoints/sup_xnet')
parser.add_argument('--path_seg_results', default='./seg_pred/sup_xnet')
parser.add_argument('--path_dataset', default='自己数据集的根目录')
parser.add_argument('--dataset_name', default='自己数据集的名称', help='CREMI, ISIC-2017, GlaS')
parser.add_argument('--input1', default='L')
parser.add_argument('--input2', default='H')
parser.add_argument('--sup_mark', default='100')
parser.add_argument('-b', '--batch_size', default=4, type=int)
parser.add_argument('-e', '--num_epochs', default=200, type=int)
parser.add_argument('-s', '--step_size', default=50, type=int)
parser.add_argument('-l', '--lr', default=0.5, type=float)
parser.add_argument('-g', '--gamma', default=0.5, type=float)
parser.add_argument('-u', '--unsup_weight', default=5, type=float)
parser.add_argument('--loss', default='dice', type=str)
parser.add_argument('-w', '--warm_up_duration', default=20)
parser.add_argument('--momentum', default=0.9, type=float)
parser.add_argument('--wd', default=-5, type=float, help='weight decay pow')
parser.add_argument('-i', '--display_iter', default=5, type=int)
parser.add_argument('-n', '--network', default='xnet', type=str)
parser.add_argument('--local_rank', default=-1, type=int)
args = parser.parse_args()
dataset_name = args.dataset_name
cfg = dataset_cfg(dataset_name)
print_num = 77 + (cfg['NUM_CLASSES'] - 3) * 14
print_num_minus = print_num - 2
print_num_half = int(print_num / 2 - 1)
path_trained_models = args.path_trained_models + '/' + str(os.path.split(args.path_dataset)[1])
path_seg_results = args.path_seg_results + '/' + str(os.path.split(args.path_dataset)[1])
# Dataset
if args.input1 == 'image':
input1_mean = 'MEAN'
input1_std = 'STD'
else:
input1_mean = 'MEAN_' + args.input1
input1_std = 'STD_' + args.input1
if args.input2 == 'image':
input2_mean = 'MEAN'
input2_std = 'STD'
else:
input2_mean = 'MEAN_' + args.input2
input2_std = 'STD_' + args.input2
data_transforms = data_transform_2d()
data_normalize_1 = data_normalize_2d(cfg[input1_mean], cfg[input1_std])
data_normalize_2 = data_normalize_2d(cfg[input2_mean], cfg[input2_std])
dataset_train = imagefloder_iitnn(
data_dir=args.path_dataset+'/train',
input1=args.input1,
input2=args.input2,
data_transform_1=data_transforms['train'],
data_normalize_1=data_normalize_1,
data_normalize_2=data_normalize_2,
sup=True,
num_images=None,
)
dataset_val = imagefloder_iitnn(
data_dir=args.path_dataset + '/val',
input1=args.input1,
input2=args.input2,
data_transform_1=data_transforms['val'],
data_normalize_1=data_normalize_1,
data_normalize_2=data_normalize_2,
sup=True,
num_images=None,
)
dataloaders = dict()
dataloaders['train'] = DataLoader(dataset_train, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=8)
dataloaders['val'] = DataLoader(dataset_val, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=8)
num_batches = {'train_sup': len(dataloaders['train']), 'val': len(dataloaders['val'])}
# Model
model = get_network(args.network, cfg['IN_CHANNELS'], cfg['NUM_CLASSES'])
model = model.cuda()
# Training Strategy
criterion = segmentation_loss(args.loss, False).cuda()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=5*10**args.wd)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
scheduler_warmup = GradualWarmupScheduler(optimizer, multiplier=1.0, total_epoch=args.warm_up_duration, after_scheduler=exp_lr_scheduler)
# Train & Val
since = time.time()
count_iter = 0
best_model = model
best_result = 'Result1'
best_val_eval_list = [0 for i in range(4)]
for epoch in range(args.num_epochs):
count_iter += 1
if (count_iter - 1) % args.display_iter == 0:
begin_time = time.time()
model.train()
train_loss_sup_1 = 0.0
train_loss_sup_2 = 0.0
train_loss_unsup = 0.0
train_loss = 0.0
val_loss_sup_1 = 0.0
val_loss_sup_2 = 0.0
unsup_weight = args.unsup_weight * (epoch + 1) / args.num_epochs
# dist.barrier()
for i, data in enumerate(dataloaders['train']):
inputs_train_1 = Variable(data['image'].cuda())
inputs_train_2 = Variable(data['image_2'].cuda())
mask_train = Variable(data['mask'].cuda())
optimizer.zero_grad()
outputs_train1, outputs_train2 = model(inputs_train_1, inputs_train_2)
torch.cuda.empty_cache()
if count_iter % args.display_iter == 0:
if i == 0:
score_list_train1 = outputs_train1
score_list_train2 = outputs_train2
mask_list_train = mask_train
# else:
elif 0 < i <= num_batches['train_sup'] / 4:
score_list_train1 = torch.cat((score_list_train1, outputs_train1), dim=0)
score_list_train2 = torch.cat((score_list_train2, outputs_train2), dim=0)
mask_list_train = torch.cat((mask_list_train, mask_train), dim=0)
max_train1 = torch.max(outputs_train1, dim=1)[1]
max_train2 = torch.max(outputs_train2, dim=1)[1]
max_train1 = max_train1.long()
max_train2 = max_train2.long()
loss_train_sup1 = criterion(outputs_train1, mask_train)
loss_train_sup2 = criterion(outputs_train2, mask_train)
loss_train_unsup = criterion(outputs_train1, max_train2) + criterion(outputs_train2, max_train1)
loss_train_unsup = loss_train_unsup * unsup_weight
loss_train = loss_train_sup1 + loss_train_sup2 + loss_train_unsup
loss_train.backward()
optimizer.step()
train_loss_sup_1 += loss_train_sup1.item()
train_loss_sup_2 += loss_train_sup2.item()
train_loss_unsup += loss_train_unsup.item()
train_loss += loss_train.item()
scheduler_warmup.step()
# torch.cuda.empty_cache()
if count_iter % args.display_iter == 0:
print('=' * print_num)
print('| Epoch {}/{}'.format(epoch + 1, args.num_epochs).ljust(print_num_minus, ' '), '|')
train_epoch_loss_sup1, train_epoch_loss_sup2, train_epoch_loss_cps, train_epoch_loss = print_train_loss_XNet(
train_loss_sup_1, train_loss_sup_2, train_loss_unsup, train_loss, num_batches, print_num,
print_num_half)
# print(score_list_train1)
# print(score_list_train2)
train_eval_list1, train_eval_list2, train_m_jc1, train_m_jc2 = print_train_eval_XNet(cfg['NUM_CLASSES'], score_list_train1, score_list_train2, mask_list_train, print_num_half)
torch.cuda.empty_cache()
with torch.no_grad():
model.eval()
for i, data in enumerate(dataloaders['val']):
# if 0 <= i <= num_batches['val']:
inputs_val = Variable(data['image'].cuda())
inputs_val_wavelet = Variable(data['image_2'].cuda())
mask_val = Variable(data['mask'].cuda())
name_val = data['ID']
optimizer.zero_grad()
outputs_val1, outputs_val2 = model(inputs_val, inputs_val_wavelet)
torch.cuda.empty_cache()
if i == 0:
score_list_val1 = outputs_val1
score_list_val2 = outputs_val2
mask_list_val = mask_val
name_list_val = name_val
else:
score_list_val1 = torch.cat((score_list_val1, outputs_val1), dim=0)
score_list_val2 = torch.cat((score_list_val2, outputs_val2), dim=0)
mask_list_val = torch.cat((mask_list_val, mask_val), dim=0)
name_list_val = np.append(name_list_val, name_val, axis=0)
loss_val_sup1 = criterion(outputs_val1, mask_val)
loss_val_sup2 = criterion(outputs_val2, mask_val)
val_loss_sup_1 += loss_val_sup1.item()
val_loss_sup_2 += loss_val_sup2.item()
torch.cuda.empty_cache()
val_epoch_loss_sup1, val_epoch_loss_sup2 = print_val_loss(val_loss_sup_1, val_loss_sup_2,
num_batches, print_num, print_num_half)
val_eval_list1, val_eval_list2, val_m_jc1, val_m_jc2 = print_val_eval(cfg['NUM_CLASSES'],
score_list_val1,
score_list_val2,
mask_list_val, print_num_half)
best_val_eval_list, best_model, best_result = save_val_best_2d(cfg['NUM_CLASSES'], best_model,
best_val_eval_list, best_result,
model, model, score_list_val1,
score_list_val2, name_list_val,
val_eval_list1, val_eval_list2,
path_trained_models,
path_seg_results, cfg['PALETTE'])
torch.cuda.empty_cache()
torch.cuda.empty_cache()
生成低频和高频图片
里面有一个wavelet2D.py(我是2D图片)。运行即可。
import numpy as np
from PIL import Image
import pywt
import argparse
import os
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--image_path', default='自己数据的位置')
# parser.add_argument('--mask_path', default='')
parser.add_argument('--L_path', default='自己保存低频图片的位置')
parser.add_argument('--H_path', default='自己保存高频图片的位置')
parser.add_argument('--wavelet_type', default='db2', help='haar, db2, bior1.5, bior2.4, coif1, dmey')
parser.add_argument('--if_RGB', default=False)
args = parser.parse_args()
if not os.path.exists(args.L_path):
os.mkdir(args.L_path)
if not os.path.exists(args.H_path):
os.mkdir(args.H_path)
for i in os.listdir(args.image_path):
image_path = os.path.join(args.image_path, i)
L_path = os.path.join(args.L_path, i)
H_path = os.path.join(args.H_path, i)
if args.if_RGB:
image = Image.open(image_path).convert('L')
else:
image = Image.open(image_path)
image = np.array(image)
LL, (LH, HL, HH) = pywt.dwt2(image, args.wavelet_type)
LL = (LL - LL.min()) / (LL.max() - LL.min()) * 255
LL = Image.fromarray(LL.astype(np.uint8))
LL.save(L_path)
LH = (LH - LH.min()) / (LH.max() - LH.min()) * 255
HL = (HL - HL.min()) / (HL.max() - HL.min()) * 255
HH = (HH - HH.min()) / (HH.max() - HH.min()) * 255
merge1 = HH + HL + LH
merge1 = (merge1-merge1.min()) / (merge1.max()-merge1.min()) * 255
merge1 = Image.fromarray(merge1.astype(np.uint8))
merge1.save(H_path)
产生数据集
我是这样的所以我读取数据集的时候还得改。大家也可以按照这个项目的readme中的那个文件对我下面这个产生数据集代码中的路径进行修改。
dataset
├── train
├── L
├── 1.png
├── 2.png
└── …
├── H
├── 1.png
├── 2.png
└── …
└── mask
├── 1.png
├── 2.png
└── …
└── val
├── L
├── H
└── mask
import os
import argparse
import random
import shutil
from shutil import copyfile
def rm_mkdir(dir_path):
if os.path.exists(dir_path):
shutil.rmtree(dir_path)
print('Remove path - %s' % dir_path)
os.makedirs(dir_path)
print('Create path - %s' % dir_path)
def main(config):
rm_mkdir(os.path.join(config.train_path,'H'))
rm_mkdir(os.path.join(config.train_path,'L'))
rm_mkdir(os.path.join(config.train_path, 'mask'))
rm_mkdir(os.path.join(config.valid_path, 'H'))
rm_mkdir(os.path.join(config.valid_path, 'L'))
rm_mkdir(os.path.join(config.valid_path, 'mask'))
H_path = os.path.join(config.origin_data_path, 'H')
H_filenames = os.listdir(H_path)
data_list = []
for filename in H_filenames:
ext = os.path.splitext(filename)[-1]
if ext == '.png':
filename = os.path.basename(filename)
data_list.append(filename)
num_total = len(data_list)
num_train = int((config.train_ratio / (config.train_ratio + config.valid_ratio )) * num_total)
num_valid = int((config.valid_ratio / (config.train_ratio + config.valid_ratio )) * num_total)
print('\nNum of train set : ', num_train)
print('\nNum of valid set : ', num_valid)
Arange = list(range(num_total))
random.shuffle(Arange)
for i in range(num_train):
idx = Arange.pop()
src = os.path.join(config.origin_data_path,'H', data_list[idx])
dst = os.path.join(config.train_path,'H', data_list[idx])
copyfile(src, dst)
src = os.path.join(config.origin_data_path, 'L', data_list[idx])
dst = os.path.join(config.train_path, 'L', data_list[idx])
copyfile(src, dst)
src = os.path.join(config.origin_data_path, 'mask_', data_list[idx])
dst = os.path.join(config.train_path, 'mask', data_list[idx])
copyfile(src, dst)
for i in range(num_valid):
idx = Arange.pop()
src = os.path.join(config.origin_data_path, 'H', data_list[idx])
dst = os.path.join(config.valid_path, 'H', data_list[idx])
copyfile(src, dst)
src = os.path.join(config.origin_data_path, 'L', data_list[idx])
dst = os.path.join(config.valid_path, 'L', data_list[idx])
copyfile(src, dst)
src = os.path.join(config.origin_data_path, 'mask', data_list[idx])
dst = os.path.join(config.valid_path, 'mask', data_list[idx])
copyfile(src, dst)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# model hyper-parameters
parser.add_argument('--train_ratio', type=float, default=0.8)#训练集和测试集的比例
parser.add_argument('--valid_ratio', type=float, default=0.2)
# data path
parser.add_argument('--origin_data_path', type=str, default='自己数据的位置')
parser.add_argument('--train_path', type=str, default='./train/')#自己要保存的训练集和测试集的位置←↓
parser.add_argument('--valid_path', type=str, default='./val/')
config = parser.parse_args()
print(config)
main(config)
改读取数据的位置
main.py中他原来是train_sup100,我用的是train文件夹。所以dataloader的参数要改。
dataset_train = imagefloder_iitnn(
data_dir=args.path_dataset+'/train',
input1=args.input1,
input2=args.input2,
data_transform_1=data_transforms['train'],
data_normalize_1=data_normalize_1,
data_normalize_2=data_normalize_2,
sup=True,
num_images=None,
)
dataset_val = imagefloder_iitnn(
data_dir=args.path_dataset + '/val',
input1=args.input1,
input2=args.input2,
data_transform_1=data_transforms['val'],
data_normalize_1=data_normalize_1,
data_normalize_2=data_normalize_2,
sup=True,
num_images=None,
)
还有dataset_2d.py中的,也有train_sup100好像也改了。具体的忘了。
class dataset_iitnn(Dataset):
def __init__(self, data_dir, input1, input2, augmentation1, normalize_1, normalize_2, sup=True,
num_images=None, **kwargs):
super(dataset_iitnn, self).__init__()
img_paths_1 = []
img_paths_2 = []
mask_paths = []
image_dir_1 = data_dir + '/' + input1
image_dir_2 = data_dir + '/' + input2
if sup:
mask_dir = data_dir + '/mask'
损失函数
我数据集是只有一个类别。
class DiceLoss(nn.Module):
"""Dice loss, need one hot encode input"""
def __init__(self, weight=None, aux=False, aux_weight=0.4, ignore_index=-1, **kwargs):
super(DiceLoss, self).__init__()
self.kwargs = kwargs
self.weight = weight
self.ignore_index = ignore_index
self.aux = aux
self.aux_weight = aux_weight
def _base_forward(self, predict, target, valid_mask):
dice = BinaryDiceLoss(**self.kwargs)
total_loss = 0
predict = F.softmax(predict, dim=1)
for i in range(target.shape[-1]):
if i != self.ignore_index:
dice_loss = dice(predict, target, valid_mask)#这里只有一个类别的把[i,:]删了,不然会报错因为超出范围
if self.weight is not None:
assert self.weight.shape[0] == target.shape[1], \
'Expect weight shape [{}], get[{}]'.format(target.shape[1], self.weight.shape[0])
dice_loss *= self.weights[i]
total_loss += dice_loss
return total_loss / target.shape[-1]
def _aux_forward(self, output, target, **kwargs):
# *preds, target = tuple(inputs)
valid_mask = (target != self.ignore_index).long()
target_one_hot = F.one_hot(torch.clamp_min(target, 0))
loss = self._base_forward(output[0], target_one_hot, valid_mask)
for i in range(1, len(output)):
aux_loss = self._base_forward(output[i], target_one_hot, valid_mask)
loss += self.aux_weight * aux_loss
return loss
def forward(self, output, target):
# preds, target = tuple(inputs)
# inputs = tuple(list(preds) + [target])
if self.aux:
return self._aux_forward(output, target)
else:
valid_mask = (target != self.ignore_index).long()
# target_one_hot = F.one_hot(torch.clamp_min(target, 0))
# target_one_hot = F.one_hot(torch.clamp_min(target, 0))#这个注释掉
return self._base_forward(output, target, valid_mask)#把target_one_hot改成target
添加自己数据集的信息
在/config/dataset_config/dataset_cfg.py中。
添加自己数据集的信息。我的理解。下面是求相关数据的程序。
'Data_one':
{
'IN_CHANNELS': 1,#单通道的
'NUM_CLASSES': 1,
'MEAN': [0.1612872],
'STD': [0.1612872],
'MEAN_H': [0.44275072],
'STD_H': [0.44275072],
'MEAN_L': [0.21374299],
'STD_L': [0.22170983],
'PALETTE': list(np.array([
[255, 255, 255],
]).flatten())
},
import cv2
import numpy as np
import os
def compute_mean_std(dataset_path):
# 初始化累积器
mean_accumulator = np.zeros(3)
std_accumulator = np.zeros(3)
total_samples = 0
# 遍历数据集
for image_file in os.listdir(dataset_path):
if image_file.endswith(".jpg") or image_file.endswith(".png"):
image_path = os.path.join(dataset_path, image_file)
# 读取图像
image = cv2.imread(image_path)
image = image / 255.0 # 将像素值缩放到 [0, 1]
# 计算均值和标准差
mean_accumulator += np.mean(image, axis=(0, 1))
std_accumulator += np.std(image, axis=(0, 1))
total_samples += 1
# 计算平均值
mean_values = mean_accumulator / total_samples
# 计算标准差
std_values = std_accumulator / total_samples
return mean_values, std_values
# 示例用法
dataset_path = "自己要求平均值、方差的数据的位置"#L,H,
#mask_path = ""
mean_values, std_values = compute_mean_std(dataset_path)
print("MEAN:", mean_values)
print("STD:", std_values)
结果
暂时跑出来是这样的。要是有问题之后会更新。大家也可以调调错误。感谢。