6、单片机与AT24C02的通讯(IIC)实验(STM32F407)

news2024/12/24 3:03:01

IIC简介

I2C(IIC,Inter-Integrated Circuit),两线式串行总线,由PHILIPS公司开发用于连接微控制器及其外围设备。 它是由数据线SDA和时钟SCL构成的串行总线,可发送和接收数据。在CPU与被控IC之间、IC与IC之间进行双向传送,高速IIC总线一般可达400kbps以上。

IIC是半双工通信方式。

多主机I2C总线系统结构

I2C协议

  • 空闲状态

        I2C总线总线的SDA和SCL两条信号线同时处于高电平时,规定为总线的空闲状态。此时各个器件的输出级场效应管均处在截止状态,即释放总线,由两条信号线各自的上拉电阻把电平拉高。

  • 开始信号

        起始信号:当SCL为高期间,SDA由高到低的跳变;启动信号是一种电平跳变时序信号,而不是一个电平信号。

  • 停止信号

        停止信号:当SCL为高期间,SDA由低到高的跳变;停止信号也是一种电平跳变时序信号,而不是一个电平信号。

  • 应答信号

        发送器每发送一个字节,就在时钟脉冲9期间释放数据线,由接收器反馈一个应答信号。 应答信号为低电平时,规定为有效应答位(ACK简称应答位),表示接收器已经成功地接收了该字节;应答信号为高电平时,规定为非应答位(NACK),一般表示接收器接收该字节没有成功。

         对于反馈有效应答位ACK的要求是,接收器在第9个时钟脉冲之前的低电平期间将SDA线拉低,并且确保在该时钟的高电平期间为稳定的低电平。 如果接收器是主控器,则在它收到最后一个字节后,发送一个NACK信号,以通知被控发送器结束数据发送,并释放SDA线,以便主控接收器发送一个停止信号P。

  • 数据的有效性

I2C总线进行数据传送时,时钟信号为高电平期间,数据线上的数据必须保持稳定,只有在时钟线上的信号为低电平期间,数据线上的高电平或低电平状态才允许变化。

        即:数据在SCL的上升沿到来之前就需准备好。并在在下降沿到来之前必须稳定。

 

  • 数据传输 

         在I2C总线上传送的每一位数据都有一个时钟脉冲相对应(或同步控制),即在SCL串行时钟的配合下,在SDA上逐位地串行传送每一位数据。数据位的传输是边沿触发。

EEPROM(24C02)

总容量是256(2K/8)个字节。

接口:IIC

正点原子开发板 在硬件上设置了 A0=A1=A2=0

 如果A2=A1=A0=0; 那么:

读的时候 Device Address=0xA1

写的时候 Device Address=0xA0

 24C02字节写时序

24C02读时序

 

myiic.h

#ifndef __MYIIC_H
#define __MYIIC_H
#include "sys.h" 
   	   		   
//IO方向设置
#define SDA_IN()  {GPIOB->MODER&=~(3<<(9*2));GPIOB->MODER|=0<<9*2;}	//PB9输入模式
#define SDA_OUT() {GPIOB->MODER&=~(3<<(9*2));GPIOB->MODER|=1<<9*2;} //PB9输出模式
//IO操作函数	 
#define IIC_SCL    PBout(8) //SCL
#define IIC_SDA    PBout(9) //SDA	 
#define READ_SDA   PBin(9)  //输入SDA 

//IIC所有操作函数
void IIC_Init(void);                //初始化IIC的IO口				 
void IIC_Start(void);				//发送IIC开始信号
void IIC_Stop(void);	  			//发送IIC停止信号
void IIC_Send_Byte(u8 txd);			//IIC发送一个字节
u8 IIC_Read_Byte(unsigned char ack);//IIC读取一个字节
u8 IIC_Wait_Ack(void); 				//IIC等待ACK信号
void IIC_Ack(void);					//IIC发送ACK信号
void IIC_NAck(void);				//IIC不发送ACK信号

void IIC_Write_One_Byte(u8 daddr,u8 addr,u8 data);
u8 IIC_Read_One_Byte(u8 daddr,u8 addr);	  
#endif

myiic.c

#include "myiic.h"
#include "delay.h"

//初始化IIC
void IIC_Init(void)
{			
  GPIO_InitTypeDef  GPIO_InitStructure;

  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);//使能GPIOB时钟

  //GPIOB8,B9初始化设置
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;//普通输出模式
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHz
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//上拉
  GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化
	IIC_SCL=1;
	IIC_SDA=1;
}
//产生IIC起始信号
void IIC_Start(void)
{
	SDA_OUT();     //sda线输出
	IIC_SDA=1;	  	  
	IIC_SCL=1;
	delay_us(4);
 	IIC_SDA=0;//START:when CLK is high,DATA change form high to low 
	delay_us(4);
	IIC_SCL=0;//钳住I2C总线,准备发送或接收数据 
}	  
//产生IIC停止信号
void IIC_Stop(void)
{
	SDA_OUT();//sda线输出
	IIC_SCL=0;
	IIC_SDA=0;//STOP:when CLK is high DATA change form low to high
 	delay_us(4);
	IIC_SCL=1; 
	IIC_SDA=1;//发送I2C总线结束信号
	delay_us(4);							   	
}
//等待应答信号到来
//返回值:1,接收应答失败
//        0,接收应答成功
u8 IIC_Wait_Ack(void)
{
	u8 ucErrTime=0;
	SDA_IN();      //SDA设置为输入  
	IIC_SDA=1;delay_us(1);	   
	IIC_SCL=1;delay_us(1);	 
	while(READ_SDA)
	{
		ucErrTime++;
		if(ucErrTime>250)
		{
			IIC_Stop();
			return 1;
		}
	}
	IIC_SCL=0;//时钟输出0 	   
	return 0;  
} 
//产生ACK应答
void IIC_Ack(void)
{
	IIC_SCL=0;
	SDA_OUT();
	IIC_SDA=0;
	delay_us(2);
	IIC_SCL=1;
	delay_us(2);
	IIC_SCL=0;
}
//不产生ACK应答		    
void IIC_NAck(void)
{
	IIC_SCL=0;
	SDA_OUT();
	IIC_SDA=1;
	delay_us(2);
	IIC_SCL=1;
	delay_us(2);
	IIC_SCL=0;
}					 				     
//IIC发送一个字节
//返回从机有无应答
//1,有应答
//0,无应答			  
void IIC_Send_Byte(u8 txd)
{                        
    u8 t;   
	SDA_OUT(); 	    
    IIC_SCL=0;//拉低时钟开始数据传输
    for(t=0;t<8;t++)
    {              
        IIC_SDA=(txd&0x80)>>7;
        txd<<=1; 	  
		delay_us(2);   //对TEA5767这三个延时都是必须的
		IIC_SCL=1;
		delay_us(2); 
		IIC_SCL=0;	
		delay_us(2);
    }	 
} 	    
//读1个字节,ack=1时,发送ACK,ack=0,发送nACK   
u8 IIC_Read_Byte(unsigned char ack)
{
	unsigned char i,receive=0;
	SDA_IN();//SDA设置为输入
    for(i=0;i<8;i++ )
	{
        IIC_SCL=0; 
        delay_us(2);
		IIC_SCL=1;
        receive<<=1;
        if(READ_SDA)receive++;   
		delay_us(1); 
    }					 
    if (!ack)
        IIC_NAck();//发送nACK
    else
        IIC_Ack(); //发送ACK   
    return receive;
}

 24cxx.h

#ifndef __24CXX_H
#define __24CXX_H
#include "myiic.h"   

#define AT24C01		127
#define AT24C02		255
#define AT24C04		511
#define AT24C08		1023
#define AT24C16		2047
#define AT24C32		4095
#define AT24C64	    8191
#define AT24C128	16383
#define AT24C256	32767  
//Mini STM32开发板使用的是24c02,所以定义EE_TYPE为AT24C02
#define EE_TYPE AT24C02
					  
u8 AT24CXX_ReadOneByte(u16 ReadAddr);							//指定地址读取一个字节
void AT24CXX_WriteOneByte(u16 WriteAddr,u8 DataToWrite);		//指定地址写入一个字节
void AT24CXX_WriteLenByte(u16 WriteAddr,u32 DataToWrite,u8 Len);//指定地址开始写入指定长度的数据
u32 AT24CXX_ReadLenByte(u16 ReadAddr,u8 Len);					//指定地址开始读取指定长度数据
void AT24CXX_Write(u16 WriteAddr,u8 *pBuffer,u16 NumToWrite);	//从指定地址开始写入指定长度的数据
void AT24CXX_Read(u16 ReadAddr,u8 *pBuffer,u16 NumToRead);   	//从指定地址开始读出指定长度的数据

u8 AT24CXX_Check(void);  //检查器件
void AT24CXX_Init(void); //初始化IIC
#endif

24cxx.c

#include "24cxx.h" 
#include "delay.h" 				 	

//初始化IIC接口
void AT24CXX_Init(void)
{
	IIC_Init();//IIC初始化
}
//在AT24CXX指定地址读出一个数据
//ReadAddr:开始读数的地址  
//返回值  :读到的数据
u8 AT24CXX_ReadOneByte(u16 ReadAddr)
{				  
	u8 temp=0;		  	    																 
    IIC_Start();  
	if(EE_TYPE>AT24C16)
	{
		IIC_Send_Byte(0XA0);	   //发送写命令
		IIC_Wait_Ack();
		IIC_Send_Byte(ReadAddr>>8);//发送高地址	    
	}else IIC_Send_Byte(0XA0+((ReadAddr/256)<<1));   //发送器件地址0XA0,写数据 	   
	IIC_Wait_Ack(); 
    IIC_Send_Byte(ReadAddr%256);   //发送低地址
	IIC_Wait_Ack();	    
	IIC_Start();  	 	   
	IIC_Send_Byte(0XA1);           //进入接收模式			   
	IIC_Wait_Ack();	 
    temp=IIC_Read_Byte(0);		   
    IIC_Stop();//产生一个停止条件	    
	return temp;
}
//在AT24CXX指定地址写入一个数据
//WriteAddr  :写入数据的目的地址    
//DataToWrite:要写入的数据
void AT24CXX_WriteOneByte(u16 WriteAddr,u8 DataToWrite)
{				   	  	    																 
    IIC_Start();  
	if(EE_TYPE>AT24C16)
	{
		IIC_Send_Byte(0XA0);	    //发送写命令
		IIC_Wait_Ack();
		IIC_Send_Byte(WriteAddr>>8);//发送高地址	  
	}else IIC_Send_Byte(0XA0+((WriteAddr/256)<<1));   //发送器件地址0XA0,写数据 	 
	IIC_Wait_Ack();	   
    IIC_Send_Byte(WriteAddr%256);   //发送低地址
	IIC_Wait_Ack(); 	 										  		   
	IIC_Send_Byte(DataToWrite);     //发送字节							   
	IIC_Wait_Ack();  		    	   
    IIC_Stop();//产生一个停止条件 
	delay_ms(10);	 
}
//在AT24CXX里面的指定地址开始写入长度为Len的数据
//该函数用于写入16bit或者32bit的数据.
//WriteAddr  :开始写入的地址  
//DataToWrite:数据数组首地址
//Len        :要写入数据的长度2,4
void AT24CXX_WriteLenByte(u16 WriteAddr,u32 DataToWrite,u8 Len)
{  	
	u8 t;
	for(t=0;t<Len;t++)
	{
		AT24CXX_WriteOneByte(WriteAddr+t,(DataToWrite>>(8*t))&0xff);
	}												    
}

//在AT24CXX里面的指定地址开始读出长度为Len的数据
//该函数用于读出16bit或者32bit的数据.
//ReadAddr   :开始读出的地址 
//返回值     :数据
//Len        :要读出数据的长度2,4
u32 AT24CXX_ReadLenByte(u16 ReadAddr,u8 Len)
{  	
	u8 t;
	u32 temp=0;
	for(t=0;t<Len;t++)
	{
		temp<<=8;
		temp+=AT24CXX_ReadOneByte(ReadAddr+Len-t-1); 	 				   
	}
	return temp;												    
}
//检查AT24CXX是否正常
//这里用了24XX的最后一个地址(255)来存储标志字.
//如果用其他24C系列,这个地址要修改
//返回1:检测失败
//返回0:检测成功
u8 AT24CXX_Check(void)
{
	u8 temp;
	temp=AT24CXX_ReadOneByte(255);//避免每次开机都写AT24CXX			   
	if(temp==0X55)return 0;		   
	else//排除第一次初始化的情况
	{
		AT24CXX_WriteOneByte(255,0X55);
	    temp=AT24CXX_ReadOneByte(255);	  
		if(temp==0X55)return 0;
	}
	return 1;											  
}

//在AT24CXX里面的指定地址开始读出指定个数的数据
//ReadAddr :开始读出的地址 对24c02为0~255
//pBuffer  :数据数组首地址
//NumToRead:要读出数据的个数
void AT24CXX_Read(u16 ReadAddr,u8 *pBuffer,u16 NumToRead)
{
	while(NumToRead)
	{
		*pBuffer++=AT24CXX_ReadOneByte(ReadAddr++);	
		NumToRead--;
	}
}  
//在AT24CXX里面的指定地址开始写入指定个数的数据
//WriteAddr :开始写入的地址 对24c02为0~255
//pBuffer   :数据数组首地址
//NumToWrite:要写入数据的个数
void AT24CXX_Write(u16 WriteAddr,u8 *pBuffer,u16 NumToWrite)
{
	while(NumToWrite--)
	{
		AT24CXX_WriteOneByte(WriteAddr,*pBuffer);
		WriteAddr++;
		pBuffer++;
	}
}

 main.c

#include "sys.h"
#include "delay.h"
#include "usart.h"
#include "led.h"
#include "lcd.h"
#include "24cxx.h"
#include "key.h"  

//要写入到24c02的字符串数组
const u8 TEXT_Buffer[]={"Explorer STM32F4 IIC TEST"};
#define SIZE sizeof(TEXT_Buffer)	 
	
int main(void)
{ 
	u8 key;
	u16 i=0;
	u8 datatemp[SIZE];	
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//设置系统中断优先级分组2
	delay_init(168);    //初始化延时函数
	uart_init(115200);	//初始化串口波特率为115200
	
	LED_Init();					//初始化LED 
 	LCD_Init();					//LCD初始化 
	KEY_Init(); 				//按键初始化  
	AT24CXX_Init();			//IIC初始化 
 	POINT_COLOR=RED; 
	LCD_ShowString(30,50,200,16,16,"Explorer STM32F4");	
	LCD_ShowString(30,70,200,16,16,"IIC TEST");	
	LCD_ShowString(30,90,200,16,16,"ATOM@ALIENTEK");
	LCD_ShowString(30,110,200,16,16,"2023/11/30");	 
	LCD_ShowString(30,130,200,16,16,"KEY1:Write  KEY0:Read");	//显示提示信息		
 	while(AT24CXX_Check())//检测不到24c02
	{
		LCD_ShowString(30,150,200,16,16,"24C02 Check Failed!");
		delay_ms(500);
		LCD_ShowString(30,150,200,16,16,"Please Check!      ");
		delay_ms(500);
		LED0=!LED0;//DS0闪烁
	}
	LCD_ShowString(30,150,200,16,16,"24C02 Ready!");    
 	POINT_COLOR=BLUE;//设置字体为蓝色	  
	while(1)
	{
		key=KEY_Scan(0);
		if(key==KEY1_PRES)//KEY1按下,写入24C02
		{
			LCD_Fill(0,170,239,319,WHITE);//清除半屏    
 			LCD_ShowString(30,170,200,16,16,"Start Write 24C02....");
			AT24CXX_Write(0,(u8*)TEXT_Buffer,SIZE);
			LCD_ShowString(30,170,200,16,16,"24C02 Write Finished!");//提示传送完成
		}
		if(key==KEY0_PRES)//KEY0按下,读取字符串并显示
		{
 			LCD_ShowString(30,170,200,16,16,"Start Read 24C02.... ");
			AT24CXX_Read(0,datatemp,SIZE);
			LCD_ShowString(30,170,200,16,16,"The Data Readed Is:  ");//提示传送完成
			LCD_ShowString(30,190,200,16,16,datatemp);//显示读到的字符串
		}
		i++;
		delay_ms(10);
		if(i==20)
		{
			LED0=!LED0;//提示系统正在运行	
			i=0;
		}		   
	} 	    
}

实验效果:

说明:先按下KEY0查看EEPROM所存内容,再按下KEY1写入新内容,最后再次按下KEY0查看内容是否变更为所写新内容

IIC实验效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1274263.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

常见算法

简单认识算法 什么是算法&#xff1f; 解决某个实际问题的过程和方法&#xff01; 排序算法 冒泡排序 选择排序 冒泡排序 每次从数组中找到最大值放在数组的后面去 import java.util.Arrays;public class Work1 {public static void main(String[] args) {//准备一个数组in…

2023年AI报告:首个投研GPTs测评重塑AI竞争格局

今天分享的是AI系列深度研究报告&#xff1a;《2023年AI报告&#xff1a;首个投研GPTs测评重塑AI竞争格局》。 &#xff08;报告出品方&#xff1a;国盛证券&#xff09; 报告共计&#xff1a;10页 1.一键创建 GPTs 助力行业研究 GPTs 目前仅对企业用户和 ChatGPT Plus 会员…

一些后端测试的东西

后端测试都测试些什么 接口测试最小单元测试联调测试 接口测试 接口测试要素 可重复性 异常覆盖 环境一致 如何进行方便的接口测试 测试工具&#xff1a; idea-httpRequest &#xff0c; apifox , postman, jmeter 如何使用idea进行高效的接口测试 编写接口 启动项目直接…

数据爬取+可视化实战_告白气球_词云展示----酷狗音乐

一、前言 歌词上做文本分析&#xff0c;数据存储在网页上&#xff0c;需要爬取数据下来&#xff0c;词云展示在工作中也变得日益重要&#xff0c;接下来将数据爬虫与可视化结合起来&#xff0c;做个词云展示案例。 二、代码 # -*- coding:utf-8 -*- # 酷狗音乐 通过获取每首歌…

【网络】传输层 -- 详解IP协议及IP协议的分片原理

目录 一、IP协议基本概念二、IP协议头格式1、报头和有效载荷如何分离2、有效载荷是如何向上交付&#xff08;分用&#xff09;的3、具体IP报头 三、网段划分1、什么是网段划分2、如何进行子网划分&#xff1f;再次理解子网划分及如何划分 3、私有IP地址和公网IP地址4、路由 四、…

ax1800配置clash

ax1800路由器固件分享 路由器版本&#xff1a; 米WiFi开发版本固件 链接&#xff1a;https://pan.baidu.com/s/1MwJSl2chv66S_EzC3UtZwA 提取码&#xff1a;xbpt 固件降级 MiWiFi 后台的常用设置 -> 系统状态中点击手动升级 点击 手动升级 选择上传的包 升级完成图示例…

PyMuPDF---Python处理PDF的宝藏库详解

1、PyMuPDF简介 1.1 介绍 在介绍PyMuPDF之前&#xff0c;先来了解一下MuPDF&#xff0c;从命名形式中就可以看出&#xff0c;PyMuPDF是MuPDF的Python接口形式。 MuPDF MuPDF 是一个轻量级的 PDF、XPS和电子书查看器。MuPDF 由软件库、命令行工具和各种平台的查看器组成。 …

深信服技术认证“SCSA-S”划重点:SQL注入漏洞

为帮助大家更加系统化地学习网络安全知识&#xff0c;以及更高效地通过深信服安全服务认证工程师考核&#xff0c;深信服特别推出“SCSA-S认证备考秘笈”共十期内容&#xff0c;“考试重点”内容框架&#xff0c;帮助大家快速get重点知识~ 划重点来啦 深信服安全服务认证工程师…

修改el-table表头样式

<style lang"scss" scoped> ::v-deep .el-table {.el-table__header-wrapper, .el-table__fixed-header-wrapper {th {word-break: break-word;background-color: #f8f8f9;color: #515a6e;height: 40px;font-size: 13px;}} } </style>

ROS报错:RLException:Invalid roslaunch XML Syntax: mismatched tag:

运行roslaunch文件提示&#xff1a; RLException:Invalid roslaunch XML Syntax: mismatched tag: line 45&#xff0c; column 2 The traceback for the exception was written to the log file. j 解决办法&#xff1a; line45 行多了标签&#xff1a;</node> 另外…

Intellij idea 快速定位到文件的开头或者结尾的几种方式

方式一&#xff1a;Scroll To Top / Scroll To Bottom 首先打开Keymap设置&#xff0c;并搜索Scroll To 依次点击File->Settings->Keymap可打开该界面 对于Scroll To Top 快速滑动定位到文件顶部&#xff0c; Scroll To Bottom快速定位到文件底部 默认是没有设置快捷键的…

用 LangChain 搭建基于 Notion 文档的 RAG 应用

如何通过语言模型查询 Notion 文档&#xff1f;LangChain 和 Milvus 缺一不可。 在整个过程中&#xff0c;我们会将 LangChain 作为框架&#xff0c;Milvus 作为相似性搜索引擎&#xff0c;用二者搭建一个基本的检索增强生成&#xff08;RAG&#xff09;应用。在之前的文章中&a…

分布式仿真SNN的思考

我之前实现的仿真完全基于如下图设计的 将整体的网络构成见一个邻接表&#xff0c;突触和神经元作为类分别存储&#xff0c;所以当一个神经元发射脉冲时&#xff0c;很容易的将脉冲传输到突触指向的后神经元。但是在分布式方丈中&#xff0c;由多个进程仿真整体的网络&#xff…

ChatGPT人工智能对话系统源码 附完整的搭建教程

人工智能技术的快速发展&#xff0c;对话系统成为了人们与计算机交互的重要方式之一。ChatGPT是一种基于深度学习的大型语言模型&#xff0c;其源码系统可以用于构建各种自然语言处理应用&#xff0c;如聊天机器人、智能客服、语音助手等。 以下是部分代码示例&#xff1a; 系…

金钟转债上市价格预测

金钟转债-123230 基本信息 转债名称&#xff1a;金钟转债&#xff0c;评级&#xff1a;A&#xff0c;发行规模&#xff1a;3.5亿元。 正股名称&#xff1a;金钟股份&#xff0c;今日收盘价&#xff1a;31.65元&#xff0c;转股价格&#xff1a;29.1元。 当前转股价值 转债面值…

NX二次开发UF_MTX2_initialize 函数介绍

文章作者&#xff1a;里海 来源网站&#xff1a;https://blog.csdn.net/WangPaiFeiXingYuan UF_MTX2_initialize Defined in: uf_mtx.h int UF_MTX2_initialize(const double x_vec [ 2 ] , const double y_vec [ 2 ] , double mtx [ 4 ] ) overview 概述 Returns a matrix…

WordPress(10)解决中文连接问题

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、修改的前后二、自定义结构讲明三、修改方法前言 提示:这里可以添加本文要记录的大概内容: 1.中文连接如:http://www.lplovemm.love/2023/11/12/测试 2.这种连接在提交sitemap收录的时…

深度学习(三):pytorch搭建卷积神经网络

1.常用函数介绍 0 设备准备 device torch.device("cuda:0" if torch.cuda.is_available() else "cpu")这行代码是用来选择设备的&#xff0c;根据是否有可用的 CUDA 设备来选择使用 GPU 还是 CPU 进行计算。 更详细的解释如下&#xff1a; torch.cuda.…

Rust UI开发(5):iced中如何进行页面布局(pick_list的使用)?(串口调试助手)

注&#xff1a;此文适合于对rust有一些了解的朋友 iced是一个跨平台的GUI库&#xff0c;用于为rust语言程序构建UI界面。 这是一个系列博文&#xff0c;本文是第五篇&#xff0c;前四篇链接&#xff1a; 1、Rust UI开发&#xff08;一&#xff09;&#xff1a;使用iced构建UI时…

【深度学习】KMeans中自动K值的确认方法

1 前言 聚类常用于数据探索或挖掘前期&#xff0c;在没有做先验经验的背景下做的探索性分析&#xff0c;也适用于样本量较大情况下的数据预处理等方面工作。例如针对企业整体用户特征&#xff0c;在未得到相关知识或经验之前先根据数据本身特点进行用户分群&#xff0c;然后再…