【MATLAB】EWT分解+FFT+HHT组合算法

news2025/1/12 22:53:46

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

EWT+FFT+HHT组合算法是一种广泛应用于信号处理领域的算法,它结合了经验小波变换(Empirical Wavelet Transform,EWT)、快速傅里叶变换(Fast Fourier Transform,FFT)和希尔伯特黄变换算法(Hilbert-Huang Transform,HHT)的优点,具有较高的计算效率和准确性。

  1. 经验小波变换(EWT):EWT是一种基于数据自适应的信号分解方法,它通过分析信号的局部特征来选择合适的小波基进行信号分解。与传统的固定小波基不同,EWT能够更好地适应不同类型的信号,并提供更准确的分解结果。

  2. 快速傅里叶变换(FFT):FFT是一种高效计算离散傅里叶变换(DFT)的算法,它能够快速计算信号在频域上的表示。通过将信号从时域转换到频域,我们可以更好地理解信号的频率成分和特征。

  3. 希尔伯特黄变换算法(HHT):HHT是一种用于非线性和非平稳信号处理的算法,它通过经验模式分解(Empirical Mode Decomposition,EMD)将信号分解为一系列固有模式函数(Intrinsic Mode Functions,IMF),然后对每个IMF进行希尔伯特谱分析,得到信号的时频分布和能量特征。

在 EWT+FFT+HHT 组合算法中,首先使用 EWT 对信号进行自适应分解,得到一系列本征模函数(Intrinsic Mode Functions,IMF);然后对每个 IMF 进行 FFT 计算其频谱特征;最后使用 HHT 对每个 IMF 进行希尔伯特谱分析,得到信号的时频分布和能量特征。这种组合算法能够充分利用三种方法的优点,具有较高的计算效率和准确性,适用于各种类型的信号处理任务。

除了上述提到的优点,EWT+FFT+HHT组合算法还具有以下特点:

  1. 自适应性:EWT能够根据信号的局部特征自适应地选择合适的小波基进行信号分解,从而更好地适应不同类型的信号。

  2. 高效性:FFT是一种快速计算离散傅里叶变换的算法,能够高效地计算信号的频域表示。HHT在处理非线性和非平稳信号时具有较高的计算效率。

  3. 非线性分析能力:HHT能够处理非线性和非平稳信号,通过EMD将信号分解为IMF,然后对每个IMF进行希尔伯特谱分析,得到信号的时频分布和能量特征。

  4. 多尺度分析能力:EWT和HHT都具有多尺度分析能力,能够同时在不同的尺度上分析信号的局部和全局特征。

  5. 广泛适用性:EWT、FFT和HHT都是广泛适用于各种类型的信号处理任务,包括但不限于信号去噪、特征提取、异常检测、时间序列分析等。

总之,EWT+FFT+HHT组合算法是一种非常强大的信号处理工具,它结合了三种方法的优点,具有自适应性、高效性、非线性分析能力和多尺度分析能力等特点,适用于各种类型的信号处理任务。

EWT+FFT+HHT组合算法还有一些其他的特性和优势。

  1. 鲁棒性:由于EWT、FFT和HHT都是基于数据的方法,它们对噪声和异常值具有较强的鲁棒性。即使在存在噪声和异常值的情况下,这些方法也能够得到较好的结果。

  2. 多域分析能力:EWT和FFT能够在时域和频域上进行分析,而HHT则能够在时频域上进行分析。因此,EWT+FFT+HHT组合算法具有多域分析能力,能够提供更全面的信号特征。

  3. 跨领域应用:由于EWT、FFT和HHT都具有广泛的应用领域,因此EWT+FFT+HHT组合算法也具有跨领域应用的能力。它可以应用于各种不同的领域,包括但不限于医学图像处理、地震信号处理、金融时间序列分析等。

  4. 可解释性:相对于一些黑箱机器学习方法,EWT+FFT+HHT组合算法具有较好的可解释性。使用者可以理解算法的每个步骤和原理,从而更好地解释结果和做出决策。

综上所述,EWT+FFT+HHT组合算法是一种非常强大的信号处理工具,它具有自适应性、高效性、非线性分析能力、多尺度分析能力和鲁棒性等特点,适用于各种类型的信号处理任务,并具有广泛的应用前景。

2 出图效果

附出图效果如下:

附视频教程操作:

【MATLAB】EWT分解+FFT+HHT组合算法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1272583.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

EUREKA: HUMAN-LEVEL REWARD DESIGN VIACODING LARGE LANGUAGE MODELS

目录 一、论文速读 1.1 摘要 1.2 论文概要总结 相关工作 主要贡献 论文主要方法 实验数据 未来研究方向 二、论文精度 2.1 论文试图解决什么问题? 2.2 论文中提到的解决方案之关键是什么? 2.3 用于定量评估的数据集是什么?代码有…

【Openstack Train安装】七、glance安装

Glance是为虚拟机的创建提供镜像的服务,我们基于Openstack是构建基本的IaaS平台对外提供虚拟机,而虚拟机在创建时必须为选择需要安装的操作系统,Glance服务就是为该选择提供不同的操作系统镜像。Glance提供Restful API可以查询虚拟机镜像的me…

多路转接<select>和<poll>使用手册

select int select(int nfds, fd_set *readfds, fd_set *writefds,fd_set *exceptfds, struct timeval *timeout); 参数说明 返回值 返回值>0 表示成功返回可访问的文件描述符个数&#xff0c;返回值0 表示标识等待时间到期返回值<0 表示出现错误…

lv11 嵌入式开发 轮询与中断13

1 CPU与硬件的交互方式 轮询 CPU执行程序时不断地询问硬件是否需要其服务&#xff0c;若需要则给予其服务&#xff0c;若不需要一段时间后再次询问&#xff0c;周而复始 中断 CPU执行程序时若硬件需要其服务&#xff0c;对应的硬件给CPU发送中断信号&#xff0c;CPU接收到中…

简历上的工作经历怎么写

通过了简历筛选&#xff0c;后续的面试官会仔细阅读你的简历内容。他们在找什么呢&#xff1f;他们希望搞清楚你在某一段经历中具体干了什么&#xff0c;并且判断你的能力具体达到了什么水平。 简历在线制作下载&#xff1a;百度幻主简历 面试官喜欢具体的经历 越具体&#x…

Springboot-注册注解【springboot常用注解】

1.组件注册 1.1 使用的注解 Configuration:普通配置类,替代以前的配置文件,配置类本身也是容器的组件|SpringBootConfiguration:Springboot配置类,与Configuration功能一样|Bean:替代以前的Bean标签,如果没有在Bean标签内定义名字,则默认组件的名字为方法名,可以直接修改注解…

简单好用!日常写给 ChatGPT 的几个提示词技巧

ChatGPT 很强&#xff0c;但是有时候又显得很蠢&#xff0c;下面是使用 GPT4 的一个实例&#xff1a; 技巧一&#xff1a;三重冒号 """ 引用内容使用三重冒号 """&#xff0c;让 ChatGPT 清晰引用的内容&#xff1a; 技巧二&#xff1a;角色设定…

数据收集与处理(爬虫技术)

文章目录 1 前言2 网络爬虫2.1 构造自己的Scrapy爬虫2.1.1 items.py2.1.2 spiders子目录2.1.3 pipelines.py 2.2 构造可接受参数的Scrapy爬虫2.3 运行Scrapy爬虫2.3.1 在命令行运行2.3.2 在程序中调用 2.4 运行Scrapy的一些要点 3 大规模非结构化数据的存储与分析4 全部代码 1 …

时间序列预测实战(二十一)PyTorch实现TCN卷积进行时间序列预测(专为新手编写的自研架构)

一、本文介绍 本篇文章给大家带来的是利用我个人编写的架构进行TCN时间序列卷积进行时间序列建模&#xff08;专门为了时间序列领域新人编写的架构&#xff0c;简单不同于市面上大家用GPT写的代码&#xff09;&#xff0c;包括结果可视化、支持单元预测、多元预测、模型拟合效…

homeassistant 随笔

1.使用mushroom-strategy自动生成ui&#xff0c;隐藏中文ares&#xff0c;名字为区域的拼音&#xff0c;例如显示厨房则真实名字为chu_fang 隐藏图片中的工作室 代码为&#xff1a;

【C++】string模拟

string讲解&#xff1a;【C】String类-CSDN博客 基本框架 #pragma once #include <iostream> using namespace std; ​ namespace wzf {class string{public:// 默认构造函数string(): _str(new char[1]), _size(0), _capacity(0){_str[0] \0; // 在没有内容时仍要有终…

Windows + docker + python + vscode : 使用容器docker搭建python开发环境,无需本地安装python开发组件

下载docker for Windows docker window下载 如果没有翻墙工具&#xff0c;可以该网盘中的docker 链接&#xff1a;https://pan.baidu.com/s/11zLy3e5kusZR-4m_Fq_cqg?pwdesmv 提取码&#xff1a;esmv 安装docker docker的安装会重启电脑&#xff0c;不要惊讶&#xff0c;且…

RTDETR阅读笔记

RTDETR阅读笔记 摘要 DETR的高计算成本限制了它们的实际应用&#xff0c;并阻碍了它们充分利用无需后处理&#xff08;例如非最大抑制NMS&#xff09;的优势。文中首先分析了NMS对实施目标检测的精度和速度的负面影响。&#xff08;RTDETR是第一个实时端到端的目标检测器。具…

计算机组成原理期中题库

计算机组成原理题目集 2.1 下面是关于计算机中存储器容量单位的叙述&#xff0c;其中错误的是 A. 最基本的计量单位是字节&#xff08;Byte&#xff09;&#xff0c;一个字节等于8bit B. 一台计算机的编址单位、指令字长和数据字长都一样&#xff0c;且是字节的整数倍 C. 最小…

在gazebo里搭建一个livox mid360 + 惯导仿真平台测试 FAST-LIO2

在gazebo里搭建一个livox mid360 惯导仿真平台测试 FAST-LIO2 前言立方体平台加入 livox mid360 激光雷达加入IMU模块调整底盘大小 并设计调用接口测试 Fast-Lio2 前言 livox mid360 在官网一直没有货&#xff0c;在gazebo里可以仿真该雷达形式的点云。 但是其只发布雷达的数…

mysql中删除数据后,新增数据时id会跳跃,主键自增id不连续

引言&#xff1a; 在使用MySQL数据库时&#xff0c;有时候我们需要删除某些记录&#xff0c;但是删除记录后可能会导致表中的id不再连续排序。 如何实现删除记录后让id重新排序的功能。 如图&#xff1a; 删除数据后&#xff0c;中间的id不会自动连续。 下面有两种方法进行重…

基于SpringBoot房产销售系统

摘 要 随着科学技术的飞速发展&#xff0c;各行各业都在努力与现代先进技术接轨&#xff0c;通过科技手段提高自身的优势&#xff1b;对于房产销售系统当然也不能排除在外&#xff0c;随着网络技术的不断成熟&#xff0c;带动了房产销售系统&#xff0c;它彻底改变了过去传统的…

3dsMax插件Datasmith Exporter安装使用方法

3dsMax插件Datasmith Exporter安装使用方法 某些文件格式无法用Datasmith直接导入虚幻引擎&#xff0c;这些数据必须先被转换为Datasmith能够识别的文件格式。Datasmith Exporter插件就可以帮助您的软件导出可以被Datasmith导入虚幻引擎的.udatasmith格式文件。 在开始使用虚幻…

Openai通用特定领域的智能语音小助手

无穷尽的Q&A 钉钉...钉钉... 双双同学刚到工位,报销答疑群的消息就万马纷沓而来。她只能咧嘴无奈的摇摇头。水都还没有喝一口就开始“人工智能”的去回复。原本很阳光心情开始蒙上一层薄薄阴影。在这无休无止的Q&A中&#xff0c;就算你对工作有磐石一般强硬&#xff0…

概念理论类-k8s :架构篇

转载&#xff1a;新手通俗易懂 k8s &#xff1a;架构篇 Kubernetes&#xff0c;读音是[kubə’netis]&#xff0c;翻译成中文就是“库伯奈踢死”。当然了&#xff0c;也可以直接读它的简称&#xff1a;k8s。为什么把Kubernetes读作k8s&#xff0c;因为Kubernetes中间有8个字母…