《PFL》论文阅读笔记

news2025/1/13 2:42:36
一、概要

随着联邦学习的发展,简单的聚合算法已经不在有效。但复杂的聚合算法使得联邦学习训练时间出现新的瓶颈。本文提出了并行联邦学习(parallel federated learning,PFL),通过调换中心节点聚合和广播的顺序。本文算法的优点:在全局聚合计算时解锁了边缘节点,在边缘节点本地计算时解锁了中心节点,并且在计算过程中具有灵活的伸缩性。
本文主要贡献:

  1. 处理数据异构和网络掉队
  2. 局部节点参与灵活性
  3. 计算训练过程中的可扩展性
二、关键算法

本文的PFL算法并没有重新设计FL框架,仅仅只是将原计算流程进行了适当的调整,主要包含同步的SPFL和异步的APFL。如图所示,(a)表示FedAvg流程:uploading–>global aggregation–>broadcasting–>local optimization。(b)表示本文提出的SPFL流程:uploading(中心节点接收当前所有边缘局部更新)–>broadcasting(中心节点广播缓存中的全局模型参数)–>全局聚合计算(中心节点利用接收到的局部更新聚合全局模型参数)。该设计可以使得本地一旦优化完成便上传到中心节点,而中心节点一旦接收到本地更新边广播缓存中的全局模型参数。因此边缘节点和中心节点不用等待阻塞。
请添加图片描述
下图是APFL的流程图:

SPFL

同步的PFL并不能处理网络掉队的问题,而是对复杂聚合逻辑做了相应的处理。其流程中对应的处理逻辑分别如下:

  • Local Update:边缘节点接收全局模型参数 w t − 1 ( g ) w_{t-1}^{(g)} wt1(g),然后使用SGD算法更新本地模型,公式: w t ( i ) = w t − 1 ( g ) − γ G t − 1 ( i ) w_{t}^{(i)} = w_{t-1}^{(g)} - \gamma G_{t-1}^{(i)} wt(i)=wt1(g)γGt1(i),其中 t t t为训练轮数, i i i为第 i i i各节点, w t − 1 ( g ) w_{t-1}^{(g)} wt1(g) t − 1 t-1 t1轮时的全局模型, G t − 1 ( i ) G_{t-1}^{(i)} Gt1(i)为通过 w t − 1 ( g ) w_{t-1}^{(g)} wt1(g)计算得到的梯度。
  • Uploading:一旦本地模型训练完成,便计算 δ ( i ) \delta^{(i)} δ(i)并上传到中心节点。
  • Broadcasting:中心节点接收到所有边缘节点的 { δ ( i ) } i = 1 N \{\delta^{(i)}\}_{i=1}^{N} {δ(i)}i=1N,便将缓存中上一轮的聚合结果 w t − 1 ( g ) w_{t-1}^{(g)} wt1(g)广播给边缘节点。这里如果上一轮的聚合结果没有完成,将会阻塞等待其完成。
  • Global Aggregation:一旦广播成功,中心节点便执行下一轮的聚合计算: w t + 1 ( g ) = w t ( g ) + 1 N ∑ i = 1 N δ ( i ) w_{t+1}^{(g)}=w_{t}^{(g)}+\frac{1}{N}\sum_{i=1}^N \delta^{(i)} wt+1(g)=wt(g)+N1i=1Nδ(i)
APFL

异步的PFL同时对边缘节点的网络掉队问题和中心节点的复杂聚合算法逻辑做了优化。每个边缘节点和中心节点都有不同的clocks,并且中心节点的clock只和其中一个边缘节点有关,例如对于第 t t t个中心节点的clock,APFL的流程如下:

  • Local Update:边缘节点 i i i完成和中心节点的通信,并接收到全局模型 w t − 1 ( g ) w_{t-1}^{(g)} wt1(g),然后更新本地模型: w t ( i ) = w t − 1 ( g ) − γ G t − 1 ( i ) w_{t}^{(i)} = w_{t-1}^{(g)} - \gamma G_{t-1}^{(i)} wt(i)=wt1(g)γGt1(i)
  • Uploading:完成本地模型更新之后,上传本地梯度 δ ( i ) \delta^{(i)} δ(i),在边缘节点 i i i本地训练和梯度上传过程中,有 n n n个其他边缘节点和中心节点通信。因此,当中心节点接收到边缘节点 i i i的本地更新之后,中心节点的clock已经是 t + n + 1 t+n+1 t+n+1
  • Broadcasting:中心节点在接收到边缘节点 i i i的本地更新 δ ( i ) \delta^{(i)} δ(i)后,将缓存中最新的全局模型发送给边缘节点 i i i,这里的最新全局模型可能是 w t + n ( g ) w_{t+n}^{(g)} wt+n(g),也可能是 w t + n − r ( g ) w_{t+n-r}^{(g)} wt+nr(g),表示中心节点在clock t t t到clock t + n t+n t+n中任意clock聚合得到的结果。
  • Global Aggregation:中心节点在上一轮聚合过程中,会接收到一部分边缘节点上传的 δ ( i ) \delta^{(i)} δ(i)。因此,聚合计算: w t + n + 1 ( g ) = w t + n + 1 − p ( g ) + 1 N ∑ i = 1 C t δ ( i ) w_{t+n+1}^{(g)}=w_{t+n+1-p}^{(g)}+\frac{1}{N}\sum_{i=1}^{C_t} \delta^{(i)} wt+n+1(g)=wt+n+1p(g)+N1i=1Ctδ(i),其中 C t C_t Ct表示中心节点接收的 δ ( i ) \delta^{(i)} δ(i)的数据量, p p p属于 C t C_t Ct。通常 C t C_t Ct只包含一个边缘节点。
SPFL和APFL的异同
  1. SPFL的中心节点更新 w w w时需要等待所有边缘节点的上传,APFL不需要。

  2. SPFL和APFL相比普通的FL有不同的加速。

  3. SPFL和APFL的收敛分析中,都能有不错的收敛。(很多数学上的分析,可以移步论文)

三、总结

从实验结果看,本文提出的算法对中心节点场景的模型训练加速优化具有很好的参考意义。


论文地址:点这里

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1270568.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

行业研究:2023年氟化钾发展前景及细分市场分析

氟化工产品,作为化工新材料之一,在“十二五”规划被单列一个专项规划。由于产品具有高性能、高附加值,氟化 工产业被称为黄金产业。 氟是一种盐,有一种叫做钾的腐化盐,这种产品是白色结晶,易吸收&#xff0…

基于Springboot的房产销售系统(有报告)。Javaee项目,springboot项目。

演示视频: 基于Springboot的房产销售系统(有报告)。Javaee项目,springboot项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构,通过Spring Sp…

飞书全新版本搭载AI智能伙伴,支持用户自选底层大模型!

原创 | 文 BFT机器人 近日,字节跳动旗下飞书正式发布“飞书智能伙伴”系列AI产品。此次新产品有专属、易协作、有知识、有记忆、更主动等特点。除此之外,“飞书智能伙伴”作为一个开放的AI服务框架,各企业可根据业务场景自主选择适合的底层大…

图扑软件受邀出席高交会-全球清洁能源创新博览会

“相聚鹏城深圳,共享能源盛宴” 第二十五届中国国际高新技术成果交易会(简称“高交会”)于 11 月 15-18 日在深圳盛大开幕。高交会由商务部、科学技术部、工业和信息化部、国家发展改革委、农业农村部、国家知识产权局、中国科学院、中国工程院和深圳市人民政府共同…

从0开始学习JavaScript--JavaScript 工厂模式

JavaScript 工厂模式是一种强大的设计模式,它提供了一种灵活的方式来创建对象。本文将深入讨论工厂模式的基本概念、多种实现方式以及在实际应用中的各种场景。 工厂模式的基本概念 工厂模式旨在通过一个函数或方法来创建对象,而不是通过类直接实例化。…

使用Python脚本实现图片合成PDF功能

目录 一、所需库 二、图片合成PDF的实现过程 三、完整的代码示例 四、注意事项 总结 在Python中,我们可以使用一些强大的库来实现图片合成PDF的功能。这个过程主要包括读取图片文件、将图片按照指定的顺序合并以及生成PDF文件。下面,让我们一起探索…

用Metasploit进行信息收集2

基于FTP协议收集信息 1.查看ftp服务的版本信息 打开metasploit 查看ftp版本的模块,并进入模块 msf6 > search ftp_version msf6 > use auxiliary/scanner/ftp/ftp_version msf6 auxiliary(scanner/ftp/ftp_version) > show options 查看靶机的端口开方情…

switch....case击穿| return 和break的区别

1、我们首先要明白switch..case的语法使用: 执行流程:首先计算switch后面圆括号中表达式的值,然后用此值依次与各个case的常量表达式比较,若圆括号中表达式的值与某个case后面的常量表达式的值相等,就执行此case后面的语句,执行后遇break语句…

C语言:用递归的方法求斐波那契数列:1,1,2,3,5,8,……的前40个数

分析&#xff1a; 首先&#xff0c;在代码的起始部分&#xff0c;包含<stdio.h>头文件&#xff0c;这个头文件提供了输入和输出的函数。 然后&#xff0c;定义了四个变量&#xff1a;f、f1、f2和i。f1和f2是斐波那契数列的前两个数字&#xff0c;初始化为1。f是当前计…

PyQt基础_011_对话框类控件QMessage

基本功能 import sys from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import *class WinForm( QWidget): def __init__(self): super(WinForm,self).__init__() self.setWindowTitle("QMessageBox") self.resize(300, 100) self.myButt…

STM32通讯设计

STM32通讯设计 通讯流程STM32程序 通讯流程 1.使用HT2202芯片配置为主机接收&#xff08;轮询模式&#xff09;。 2.将STM32芯片配置为从机发送&#xff0c;中断模式下发送固定数据。 3.如果HT2202芯片能够收到STM32发送的数据则通讯成功&#xff0c;否则通讯失败。 STM32程序…

Vue性能优化方法

一、前言 1.1 为什么需要性能优化 用户体验&#xff1a;优化性能可以提升用户体验&#xff0c;降低加载时间和响应时间&#xff0c;让用户更快地看到页面内容。SEO优化&#xff1a;搜索引擎更喜欢快速响应的网站&#xff0c;优化性能可以提高网站的排名。节约成本&#xff1…

如何判断电脑电源质量的好坏?

电脑电源作为电脑的关键部件直接影响到电脑的性能和寿命&#xff0c;因此选择一个好的电源至关重要。那么要如何判断电脑电源的好坏呢?判断的指标都有哪些呢? 1.外观检测 观察电源外观可以初步判断电脑电源的工艺质量和材料质量。外观检测需要检查电源外壳是否坚固&#xff0…

视频监控平台EasyCVR多场景应用,AI视频分析技术助力行业升级转型

传统的视频监控系统建设&#xff0c;经常存在各方面的因素制约&#xff0c;造成管理机制不健全、统筹规划不到位、联网共享不规范&#xff0c;形成“信息孤岛”、“数据烟囱”。在监控系统的建设中缺乏统一规划&#xff0c;标准不统一、视频图像信息利用率低等问题日益突出。随…

uniapp如何与原生应用进行混合开发?

目录 前言 1.集成Uniapp 2.与原生应用进行通信 3.实现原生功能 4.使用原生UI组件 结论: 前言 随着移动应用市场的不断发展&#xff0c;使用原生开发的应用已经不能满足用户的需求&#xff0c;而混合开发成为了越来越流行的选择。其中&#xff0c;Uniapp作为一种跨平台的开…

【Python | 测试】assert 断言最佳实践

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…

Linguistic Steganalysis in Few-Shot Scenario论文阅读笔记

TIFS期刊 A类期刊 新知识点 Introduction Linguistic Steganalysis in Few-Shot Scenario模型是个预训练方法。 评估了四种文本加密分析方法&#xff0c;TS-CSW、TS-RNN、Zou、SeSy&#xff0c;用于分析和训练的样本都由VAE-Stego生产(编码方式使用AC编码)。 实验是对比在少样…

禁区!V社CSGO皮肤交易不可触及之红线

2013年8月13日&#xff0c;Valve通过一次版本更新向全世界发布了CS:GO的皮肤系统。自那时起&#xff0c;皮肤系统就成为CS:GO的重要组成部分&#xff0c;不仅为游戏增添了别样的特色&#xff0c;也创造了属于自己的“金融”市场。随着越来越多玩家的加入&#xff0c;皮肤市场也…

centos nginx安装及常用命令

nginx配置文件位置 nginx 安装有两种方式一种是联网一键下载&#xff0c;Nginx 配置文件在 /etc/nginx 目录下&#xff0c;一种是源码包可以无网下载&#xff0c;有两个配置文件启动地方一个是安装包存放位置&#xff0c;一是/usr/local/nginx/conf下&#xff0c;启动要看你…

Latex中多行公式换行及设置编号位置

Latex中多行公式换行及设置编号位置_latex公式换行_泡泡和善意的博客-CSDN博客文章浏览阅读3.2w次&#xff0c;点赞14次&#xff0c;收藏97次。1. 公式换行公式换行的方式有很多种&#xff0c;介绍三种&#xff08;1&#xff09;用equation结合aligned&#xff1a;\begin{equat…