面试题:Docker 有几种网络模式?很多5 年工作经验都答不上来。。

news2025/1/13 13:20:22

文章目录

  • docker容器网络
  • docker的4种网络模式
    • bridge模式
    • container模式
    • host模式
    • none模式
  • docker容器网络配置
    • Linux内核实现名称空间的创建
      • ip netns命令
    • 创建Network Namespace
    • 操作Network Namespace
    • 转移设备
    • veth pair
    • 创建veth pair
    • 实现Network Namespace间通信
  • 四种网络模式配置
    • bridge模式配置
    • none模式配置
    • container模式配置
    • host模式配置
  • 容器的常用操作
    • 查看容器的主机名
    • 在容器启动时注入主机名
    • 手动指定容器要使用的DNS
    • 手动往/etc/hosts文件中注入主机名到IP地址的映射
    • 开放容器端口
    • 自定义docker0桥的网络属性信息


docker容器网络

Docker在安装后自动提供3种网络,可以使用docker network ls命令查看
[root@localhost ~]# docker network ls
NETWORK ID NAME DRIVER SCOPE
cd97bb997b84 bridge bridge local
0a04824fc9b6 host host local
4dcb8fbdb599 none null local
Docker使用Linux桥接,在宿主机虚拟一个Docker容器网桥(docker0),Docker启动一个容器时会根据Docker网桥的网段分配给容器一个IP地址,称为Container-IP,同时Docker网桥是每个容器的默认网关。

因为在同一宿主机内的容器都接入同一个网桥,这样容器之间就能够通过容器的Container-IP直接通信。

docker的4种网络模式

图片

图片

bridge模式

当Docker进程启动时,会在主机上创建一个名为docker0的虚拟网桥,此主机上启动的Docker容器会连接到这个虚拟网桥上。虚拟网桥的工作方式和物理交换机类似,这样主机上的所有容器就通过交换机连在了一个二层网络中。

从docker0子网中分配一个IP给容器使用,并设置docker0的IP地址为容器的默认网关。在主机上创建一对虚拟网卡veth pair设备,Docker将veth pair设备的一端放在新创建的容器中,并命名为eth0(容器的网卡),另一端放在主机中,以vethxxx这样类似的名字命名,并将这个网络设备加入到docker0网桥中。可以通过brctl show命令查看。

bridge模式是docker的默认网络模式,不写–network参数,就是bridge模式。使用docker run -p时,docker实际是在iptables做了DNAT规则,实现端口转发功能。可以使用iptables -t nat -vnL查看。

bridge模式如下图所示:
图片

假设上图的docker2中运行了一个nginx,大家来想几个问题:

  • 同主机间两个容器间是否可以直接通信?比如在docker1上能不能直接访问到docker2的nginx站点?
  • 在宿主机上能否直接访问到docker2的nginx站点?
  • 在另一台主机上如何访问node1上的这个nginx站点呢?DNAT发布?

Docker网桥是宿主机虚拟出来的,并不是真实存在的网络设备,外部网络是无法寻址到的,这也意味着外部网络无法通过直接Container-IP访问到容器。如果容器希望外部访问能够访问到,可以通过映射容器端口到宿主主机(端口映射),即docker run创建容器时候通过 -p 或 -P 参数来启用,访问容器的时候就通过[宿主机IP]:[容器端口]访问容器。

container模式

这个模式指定新创建的容器和已经存在的一个容器共享一个 Network Namespace,而不是和宿主机共享。新创建的容器不会创建自己的网卡,配置自己的 IP,而是和一个指定的容器共享 IP、端口范围等。同样,两个容器除了网络方面,其他的如文件系统、进程列表等还是隔离的。两个容器的进程可以通过 lo 网卡设备通信。

container模式如下图所示:

图片

host模式

如果启动容器的时候使用host模式,那么这个容器将不会获得一个独立的Network Namespace,而是和宿主机共用一个Network Namespace。容器将不会虚拟出自己的网卡,配置自己的IP等,而是使用宿主机的IP和端口。但是,容器的其他方面,如文件系统、进程列表等还是和宿主机隔离的。

使用host模式的容器可以直接使用宿主机的IP地址与外界通信,容器内部的服务端口也可以使用宿主机的端口,不需要进行NAT,host最大的优势就是网络性能比较好,但是docker host上已经使用的端口就不能再用了,网络的隔离性不好。

Host模式如下图所示:
图片

none模式

使用none模式,Docker容器拥有自己的Network Namespace,但是,并不为Docker容器进行任何网络配置。也就是说,这个Docker容器没有网卡、IP、路由等信息。需要我们自己为Docker容器添加网卡、配置IP等。

这种网络模式下容器只有lo回环网络,没有其他网卡。none模式可以在容器创建时通过–network none来指定。这种类型的网络没有办法联网,封闭的网络能很好的保证容器的安全性。

应用场景:

  • 启动一个容器处理数据,比如转换数据格式
  • 一些后台的计算和处理任务

none模式如下图所示:

图片

docker network inspect bridge   #查看bridge网络的详细配置

docker容器网络配置

Linux内核实现名称空间的创建

ip netns命令

可以借助ip netns命令来完成对 Network Namespace 的各种操作。ip netns命令来自于iproute安装包,一般系统会默认安装,如果没有的话,请自行安装。

注意:ip netns命令修改网络配置时需要 sudo 权限。

可以通过ip netns命令完成对Network Namespace 的相关操作,可以通过ip netns help查看命令帮助信息:

[root@localhost ~]# ip netns help
Usage: ip netns list
       ip netns add NAME
       ip netns set NAME NETNSID
       ip [-all] netns delete [NAME]
       ip netns identify [PID]
       ip netns pids NAME
       ip [-all] netns exec [NAME] cmd ...
       ip netns monitor
       ip netns list-id

默认情况下,Linux系统中是没有任何 Network Namespace的,所以ip netns list命令不会返回任何信息。

创建Network Namespace

通过命令创建一个名为ns0的命名空间:

[root@localhost ~]# ip netns list
[root@localhost ~]# ip netns add ns0
[root@localhost ~]# ip netns list
ns0

新创建的 Network Namespace 会出现在/var/run/netns/目录下。如果相同名字的 namespace 已经存在,命令会报Cannot create namespace file “/var/run/netns/ns0”: File exists的错误。

[root@localhost ~]# ls /var/run/netns/
ns0
[root@localhost ~]# ip netns add ns0
Cannot create namespace file "/var/run/netns/ns0": File exists

对于每个 Network Namespace 来说,它会有自己独立的网卡、路由表、ARP 表、iptables 等和网络相关的资源。

操作Network Namespace

ip命令提供了ip netns exec子命令可以在对应的 Network Namespace 中执行命令。

查看新创建 Network Namespace 的网卡信息

[root@localhost ~]# ip netns exec ns0 ip addr
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

可以看到,新创建的Network Namespace中会默认创建一个lo回环网卡,此时网卡处于关闭状态。此时,尝试去 ping 该lo回环网卡,会提示Network is unreachable

[root@localhost ~]# ip netns exec ns0 ping 127.0.0.1
connect: Network is unreachable
127.0.0.1是默认回环网卡

通过下面的命令启用lo回环网卡:

[root@localhost ~]# ip netns exec ns0 ip link set lo up 
[root@localhost ~]# ip netns exec ns0 ping 127.0.0.1
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.029 ms
64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.029 ms
^C
--- 127.0.0.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1036ms
rtt min/avg/max/mdev = 0.029/0.029/0.029/0.000 ms

转移设备

我们可以在不同的 Network Namespace 之间转移设备(如veth)。由于一个设备只能属于一个 Network Namespace ,所以转移后在这个 Network Namespace 内就看不到这个设备了。
其中,veth设备属于可转移设备,而很多其它设备(如lo、vxlan、ppp、bridge等)是不可以转移的。

veth pair

veth pair 全称是 Virtual Ethernet Pair,是一个成对的端口,所有从这对端口一 端进入的数据包都将从另一端出来,反之也是一样。

引入veth pair是为了在不同的 Network Namespace 直接进行通信,利用它可以直接将两个 Network Namespace 连接起来。

图片

创建veth pair

[root@localhost ~]# ip link add type veth
[root@localhost ~]# ip a

4: veth0@veth1: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN group default qlen 1000
    link/ether 0a:f4:e2:2d:37:fb brd ff:ff:ff:ff:ff:ff
5: veth1@veth0: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN group default qlen 1000
    link/ether 5e:7e:f6:59:f0:4f brd ff:ff:ff:ff:ff:ff
可以看到,此时系统中新增了一对veth pair,将veth0和veth1两个虚拟网卡连接了起来,此时这对 veth pair 处于”未启用“状态。

实现Network Namespace间通信

下面我们利用veth pair实现两个不同的 Network Namespace 之间的通信。刚才我们已经创建了一个名为ns0的 Network Namespace,下面再创建一个信息Network Namespace,命名为ns1

[root@localhost ~]# ip netns add ns1
[root@localhost ~]# ip netns list
ns1
ns0

然后我们将veth0加入到ns0,将veth1加入到ns1

[root@localhost ~]# ip link set veth0 netns ns0
[root@localhost ~]# ip link set veth1 netns ns1

然后我们分别为这对veth pair配置上ip地址,并启用它们

[root@localhost ~]# ip netns exec ns0 ip link set veth0 up
[root@localhost ~]# ip netns exec ns0 ip addr add 192.0.0.1/24 dev veth0
[root@localhost ~]# ip netns exec ns1 ip link set veth1 up
[root@localhost ~]# ip netns exec ns1 ip addr add 192.0.0.2/24 dev veth1

查看这对veth pair的状态

[root@localhost ~]# ip netns exec ns0 ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host 
       valid_lft forever preferred_lft forever
4: veth0@if5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
    link/ether 0a:f4:e2:2d:37:fb brd ff:ff:ff:ff:ff:ff link-netns ns1
    inet 192.0.0.1/24 scope global veth0
       valid_lft forever preferred_lft forever
    inet6 fe80::8f4:e2ff:fe2d:37fb/64 scope link 
       valid_lft forever preferred_lft forever
[root@localhost ~]# ip netns exec ns1 ip a
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
5: veth1@if4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
    link/ether 5e:7e:f6:59:f0:4f brd ff:ff:ff:ff:ff:ff link-netns ns0
    inet 192.0.0.2/24 scope global veth1
       valid_lft forever preferred_lft forever
    inet6 fe80::5c7e:f6ff:fe59:f04f/64 scope link 
       valid_lft forever preferred_lft forever

从上面可以看出,我们已经成功启用了这个veth pair,并为每个veth设备分配了对应的ip地址。我们尝试在ns1中访问ns0中的ip地址

[root@localhost ~]# ip netns exec ns1 ping 192.0.0.1
PING 192.0.0.1 (192.0.0.1) 56(84) bytes of data.
64 bytes from 192.0.0.1: icmp_seq=1 ttl=64 time=0.033 ms
64 bytes from 192.0.0.1: icmp_seq=2 ttl=64 time=0.041 ms
^C
--- 192.0.0.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.033/0.037/0.041/0.004 ms
[root@localhost ~]# ip netns exec ns0 ping 192.0.0.2
PING 192.0.0.2 (192.0.0.2) 56(84) bytes of data.
64 bytes from 192.0.0.2: icmp_seq=1 ttl=64 time=0.025 ms
64 bytes from 192.0.0.2: icmp_seq=2 ttl=64 time=0.025 ms
^C
--- 192.0.0.2 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1038ms
rtt min/avg/max/mdev = 0.025/0.025/0.025/0.000 ms

可以看到,veth pair成功实现了两个不同Network Namespace之间的网络交互。

四种网络模式配置

bridge模式配置

[root@localhost ~]# docker run -it --name ti --rm busybox
/ # ifconfig
eth0      Link encap:Ethernet  HWaddr 02:42:AC:11:00:02  
          inet addr:172.17.0.2  Bcast:172.17.255.255  Mask:255.255.0.0
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:12 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0 
          RX bytes:1032 (1.0 KiB)  TX bytes:0 (0.0 B)

lo        Link encap:Local Loopback  
          inet addr:127.0.0.1  Mask:255.0.0.0
          UP LOOPBACK RUNNING  MTU:65536  Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000 
          RX bytes:0 (0.0 B)  TX bytes:0 (0.0 B)

在创建容器时添加–network bridge与不加–network选项效果是一致的

[root@localhost ~]# docker run -it --name t1 --network bridge --rm busybox
/ # ifconfig
eth0      Link encap:Ethernet  HWaddr 02:42:AC:11:00:02  
          inet addr:172.17.0.2  Bcast:172.17.255.255  Mask:255.255.0.0
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:8 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0 
          RX bytes:696 (696.0 B)  TX bytes:0 (0.0 B)

lo        Link encap:Local Loopback  
          inet addr:127.0.0.1  Mask:255.0.0.0
          UP LOOPBACK RUNNING  MTU:65536  Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000 
          RX bytes:0 (0.0 B)  TX bytes:0 (0.0 B)

none模式配置

[root@localhost ~]# docker run -it --name t1 --network none --rm busybox
/ # ifconfig -a
lo        Link encap:Local Loopback  
          inet addr:127.0.0.1  Mask:255.0.0.0
          UP LOOPBACK RUNNING  MTU:65536  Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000 
          RX bytes:0 (0.0 B)  TX bytes:0 (0.0 B)

container模式配置

启动第一个容器

[root@localhost ~]# docker run -dit --name b3 busybox
af5ba32f990ebf5a46d7ecaf1eec67f1712bbef6ad7df37d52b7a8a498a592a0

[root@localhost ~]# docker exec -it b3 /bin/sh
/ # ifconfig 
eth0      Link encap:Ethernet  HWaddr 02:42:AC:11:00:02  
          inet addr:172.17.0.2  Bcast:172.17.255.255  Mask:255.255.0.0
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:11 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0 
          RX bytes:906 (906.0 B)  TX bytes:0 (0.0 B)

启动第二个容器

[root@localhost ~]# docker run -it --name b2 --rm busybox
/ # ifconfig 
eth0      Link encap:Ethernet  HWaddr 02:42:AC:11:00:03  
          inet addr:172.17.0.3  Bcast:172.17.255.255  Mask:255.255.0.0
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:6 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0 
          RX bytes:516 (516.0 B)  TX bytes:0 (0.0 B)

可以看到名为b2的容器IP地址是10.0.0.3,与第一个容器的IP地址不是一样的,也就是说并没有共享网络,此时如果我们将第二个容器的启动方式改变一下,就可以使名为b2的容器IP与B3容器IP一致,也即共享IP,但不共享文件系统。

[root@localhost ~]# docker run -it --name b2 --rm --network container:b3 busybox
/ # ifconfig 
eth0      Link encap:Ethernet  HWaddr 02:42:AC:11:00:02  
          inet addr:172.17.0.2  Bcast:172.17.255.255  Mask:255.255.0.0
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:14 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0在b1容器上用本地地址去访问此站点
          
          collisions:0 txqueuelen:0 
          RX bytes:1116 (1.0 KiB)  TX bytes:0 (0.0 B)

此时我们在b1容器上创建一个目录
/ # mkdir /tmp/data
/ # ls /tmp
data

到b2容器上检查/tmp目录会发现并没有这个目录,因为文件系统是处于隔离状态,仅仅是共享了网络而已。

在b2容器上部署一个站点

/ # echo 'hello world' > /tmp/index.html
/ # ls /tmp
index.html
/ # httpd -h /tmp
/ # netstat -antl
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       
tcp        0      0 :::80                   :::*                    LISTEN      

在b1容器上用本地地址去访问此站点

/ # wget -O - -q 172.17.0.2:80
hello world

host模式配置

启动容器时直接指明模式为host

[root@localhost ~]# docker run -it --name b2 --rm --network host busybox
/ # ifconfig 
docker0   Link encap:Ethernet  HWaddr 02:42:B8:7F:8E:2C  
          inet addr:172.17.0.1  Bcast:172.17.255.255  Mask:255.255.0.0
          inet6 addr: fe80::42:b8ff:fe7f:8e2c/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:3 errors:0 dropped:0 overruns:0 frame:0
          TX packets:20 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0 
          RX bytes:116 (116.0 B)  TX bytes:1664 (1.6 KiB)

ens33     Link encap:Ethernet  HWaddr 00:0C:29:95:19:47  
          inet addr:192.168.203.138  Bcast:192.168.203.255  Mask:255.255.255.0
          inet6 addr: fe80::2e61:1ea3:c05a:3d9b/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:9626 errors:0 dropped:0 overruns:0 frame:0
          TX packets:3950 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000 
          RX bytes:3779562 (3.6 MiB)  TX bytes:362386 (353.8 KiB)

lo        Link encap:Local Loopback  
          inet addr:127.0.0.1  Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING  MTU:65536  Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000 
          RX bytes:0 (0.0 B)  TX bytes:0 (0.0 B)

veth09ee47e Link encap:Ethernet  HWaddr B2:10:53:7B:66:AE  
          inet6 addr: fe80::b010:53ff:fe7b:66ae/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:3 errors:0 dropped:0 overruns:0 frame:0
          TX packets:19 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0 
          RX bytes:158 (158.0 B)  TX bytes:1394 (1.3 KiB)

此时如果我们在这个容器中启动一个http站点,我们就可以直接用宿主机的IP直接在浏览器中访问这个容器中的站点了。

容器的常用操作

查看容器的主机名

[root@localhost ~]# docker run -it --name t1 --network bridge --rm busybox
/ # hostname
48cb45a0b2e7

在容器启动时注入主机名

[root@localhost ~]# docker run -it --name t1 --network bridge --hostname ljl --rm busybox
/ # hostname 
ljl
/ # cat /etc/hosts
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
172.17.0.3 ljl
/ # cat /etc/resolv.conf 
# Generated by NetworkManager
search localdomain
nameserver 192.168.203.2
/ # ping www.baidu.com
PING www.baidu.com (182.61.200.7): 56 data bytes
64 bytes from 182.61.200.7: seq=0 ttl=127 time=31.929 ms
64 bytes from 182.61.200.7: seq=1 ttl=127 time=41.062 ms
64 bytes from 182.61.200.7: seq=2 ttl=127 time=31.540 ms
^C
--- www.baidu.com ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 31.540/34.843/41.062 ms

手动指定容器要使用的DNS

[root@localhost ~]# docker run -it --name t1 --network bridge --hostname ljl --dns 114.114.114.114 --rm busybox
/ # cat /etc/resolv.conf 
search localdomain
nameserver 114.114.114.114
/ # nslookup -type=a www.baidu.com
Server:  114.114.114.114
Address: 114.114.114.114:53

Non-authoritative answer:
www.baidu.com canonical name = www.a.shifen.com
Name: www.a.shifen.com
Address: 182.61.200.6
Name: www.a.shifen.com
Address: 182.61.200.7

手动往/etc/hosts文件中注入主机名到IP地址的映射

[root@localhost ~]# docker run -it --name t1 --network bridge --hostname ljl --add-host www.a.com:1.1.1.1 --rm busybox
/ # cat /etc/hosts
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
1.1.1.1 www.a.com
172.17.0.3 ljl

开放容器端口

执行docker run的时候有个-p选项,可以将容器中的应用端口映射到宿主机中,从而实现让外部主机可以通过访问宿主机的某端口来访问容器内应用的目的。
-p选项能够使用多次,其所能够暴露的端口必须是容器确实在监听的端口。

-p选项的使用格式:

  • -p containerPort将指定的容器端口映射至主机所有地址的一个动态端口
  • -p hostPort : containerPort将容器端口 containerPort 映射至指定的主机端口 hostPort
  • -p ip :: containerPort将指定的容器端口 containerPort 映射至主机指定 ip 的动态端口
  • -p ip : hostPort : containerPort将指定的容器端口 containerPort 映射至主机指定 ip 的端口 hostPort

动态端口指的是随机端口,具体的映射结果可使用docker port命令查看。

[root@localhost ~]# docker run -dit --name web1 -p 192.168.203.138::80 httpd
e97bc1774e40132659990090f0e98a308a7f83986610ca89037713e9af8a6b9f
[root@localhost ~]# docker ps 
CONTAINER ID   IMAGE     COMMAND              CREATED          STATUS          PORTS                           NAMES
e97bc1774e40   httpd     "httpd-foreground"   6 seconds ago    Up 5 seconds    192.168.203.138:49153->80/tcp   web1
af5ba32f990e   busybox   "sh"                 48 minutes ago   Up 48 minutes                                   b3
[root@localhost ~]# ss -antl
State    Recv-Q   Send-Q        Local Address:Port        Peer Address:Port   Process   
LISTEN   0        128         192.168.203.138:49153            0.0.0.0:*                
LISTEN   0        128                 0.0.0.0:22               0.0.0.0:*                
LISTEN   0        128                    [::]:22                  [::]:*       

以上命令执行后会一直占用着前端,我们新开一个终端连接来看一下容器的80端口被映射到了宿主机的什么端口上

[root@localhost ~]# docker port web1
80/tcp -> 192.168.203.138:49153

由此可见,容器的80端口被暴露到了宿主机的49153端口上,此时我们在宿主机上访问一下这个端口看是否能访问到容器内的站点

[root@localhost ~]# curl http://192.168.203.138:49153
<html><body><h1>It works!</h1></body></html>

iptables防火墙规则将随容器的创建自动生成,随容器的删除自动删除规则。

[root@localhost ~]# iptables -t nat -nvL
Chain PREROUTING (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target     prot opt in     out     source               destination         
    3   164 DOCKER     all  --  *      *       0.0.0.0/0            0.0.0.0/0            ADDRTYPE match dst-type LOCAL

Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target     prot opt in     out     source               destination         

Chain POSTROUTING (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target     prot opt in     out     source               destination         
    4   261 MASQUERADE  all  --  *      !docker0  172.17.0.0/16        0.0.0.0/0           
    0     0 MASQUERADE  tcp  --  *      *       172.17.0.3           172.17.0.3           tcp dpt:80

Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target     prot opt in     out     source               destination         
    2   120 DOCKER     all  --  *      *       0.0.0.0/0           !127.0.0.0/8          ADDRTYPE match dst-type LOCAL

Chain DOCKER (2 references)
 pkts bytes target     prot opt in     out     source               destination         
    1    60 RETURN     all  --  docker0 *       0.0.0.0/0            0.0.0.0/0           
    1    60 DNAT       tcp  --  !docker0 *       0.0.0.0/0            192.168.203.138      tcp dpt:49153 to:172.17.0.3:80

将容器端口映射到指定IP的随机端口

[root@localhost ~]# docker run -dit --name web1 -p 192.168.203.138::80 httpd

在另一个终端上查看端口映射情况

[root@localhost ~]# docker port web1
80/tcp -> 192.168.203.138:49153

自定义docker0桥的网络属性信息

自定义docker0桥的网络属性信息需要修改/etc/docker/daemon.json配置文件

[root@localhost ~]# cd /etc/docker/
[root@localhost docker]# vim daemon.json 
[root@localhost docker]# systemctl daemon-reload
[root@localhost docker]# systemctl restart docker

{
    "registry-mirrors": ["https://4hygggbu.mirror.aliyuncs.com/"],
    "bip": "192.168.1.5/24"
}
EOF
[root@localhost ~]# vim /lib/systemd/system/docker.service 

ExecStart=/usr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.sock -H tcp://0.0.0.0:2375  -H unix:///var/run/docker.sock
[root@localhost ~]# systemctl daemon-reload
[root@localhost ~]# systemctl restart docker

在客户端上向dockerd直接传递“-H|–host”选项指定要控制哪台主机上的docker容器

[root@localhost ~]# docker -H 192.168.203.138:2375 ps
CONTAINER ID   IMAGE     COMMAND              CREATED             STATUS          PORTS                           NAMES
e97bc1774e40   httpd     "httpd-foreground"   30 minutes ago      Up 11 seconds   192.168.203.138:49153->80/tcp   web1
af5ba32f990e   busybox   "sh"                 About an hour ago   Up 14 seconds                                   b3

创建新网络

[root@localhost ~]# docker network create ljl -d bridge 
883eda50812bb214c04986ca110dbbcb7600eba8b033f2084cd4d750b0436e12
[root@localhost ~]# docker network ls
NETWORK ID     NAME      DRIVER    SCOPE
0c5f4f114c27   bridge    bridge    local
8c2d14f1fb82   host      host      local
883eda50812b   ljl       bridge    local
85ed12d38815   none      null      local

创建一个额外的自定义桥,区别于docker0

[root@localhost ~]# docker network create -d bridge --subnet "192.168.2.0/24" --gateway "192.168.2.1" br0
af9ba80deb619de3167939ec5b6d6136a45dce90907695a5bc5ed4608d188b99
[root@localhost ~]# docker network ls
NETWORK ID     NAME      DRIVER    SCOPE
af9ba80deb61   br0       bridge    local
0c5f4f114c27   bridge    bridge    local
8c2d14f1fb82   host      host      local
883eda50812b   ljl       bridge    local
85ed12d38815   none      null      local

使用新创建的自定义桥来创建容器:

[root@localhost ~]# docker run -it --name b1 --network br0 busybox
/ # ifconfig 
eth0      Link encap:Ethernet  HWaddr 02:42:C0:A8:02:02  
          inet addr:192.168.2.2  Bcast:192.168.2.255  Mask:255.255.255.0
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:11 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0 
          RX bytes:962 (962.0 B)  TX bytes:0 (0.0 B)

再创建一个容器,使用默认的bridge桥:

[root@localhost ~]# docker run --name b2 -it busybox
/ # ls
bin   dev   etc   home  proc  root  sys   tmp   usr   var
/ # ifconfig 
eth0      Link encap:Ethernet  HWaddr 02:42:C0:A8:01:03  
          inet addr:192.168.1.3  Bcast:192.168.1.255  Mask:255.255.255.0
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:6 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0 
          RX bytes:516 (516.0 B)  TX bytes:0 (0.0 B)

再创建一个容器,使用默认的bridge

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1270464.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

springboot启动开启热部署

springboot启动开启热部署 手动方式 或者点idea上面的build->build project 自动方式 勾上Build project automatically 然后ctrl alt shift / 选择Registr 勾上就好了 新版idea可以在这里选 热部署范围设置 这是spring-boot-devtools起的作用&#xff0c;所以还…

Rest模式和参数

展开运算符和Rest参数都是JavaScript中的语法特性&#xff0c;用于处理函数的参数。它们在使用方式和功能上有一些区别。 展开运算符用于将可迭代对象展开为独立的值&#xff0c;而Rest参数用于将多个参数收集到一个数组中。展开运算符可以用于多种上下文&#xff0c;而Rest参数…

代码浅析DLIO(三)---子图构建

0. 简介 我们刚刚了解过DLIO的整个流程&#xff0c;我们发现相比于Point-LIO而言&#xff0c;这个方法更适合我们去学习理解&#xff0c;同时官方给出的结果来看DLIO的结果明显好于现在的主流方法&#xff0c;当然指的一提的是&#xff0c;这个DLIO是必须需要六轴IMU的&#x…

three.js球体实现

作者&#xff1a;baekpcyyy&#x1f41f; 使用three.js渲染出可以调节大小的立方体 1.搭建开发环境 1.首先新建文件夹用vsc打开项目终端 2.执行npm init -y 创建配置文件夹 3.执行npm i three0.152 安装three.js依赖 4.执行npm I vite -D 安装 Vite 作为开发依赖 5.根…

C#文件流二进制文件的读写

目录 一、BinaryWriter类 二、BinaryReader类 三、示例 1.源码 2.生成效果 二进制文件的写入与读取主要是通过BinaryWriter类和BinaryReader类来实现的。 一、BinaryWriter类 BinaryWriter类以二进制形式将基元类型写入流&#xff0c;并支持用特定的编码写入字符串&#…

Linux环境搭建(Ubuntu22.04)+ 配置共享文件夹(Samba)

Linux开发环境准备 搭建Linux开发环境所需要的软件如下&#xff1a; VMware虚拟机&#xff1a;用于运行Linux操作系统的虚拟机软件之一&#xff0c;VMware下载安装在文章中不做说明&#xff0c;可自行百度谢谢Ubuntu光盘镜像&#xff1a;用于源代码编译&#xff0c;有闲置计算…

C#开发的OpenRA游戏之属性SelectionDecorations(14)

C#开发的OpenRA游戏之属性SelectionDecorations(14) 前面分析选择类时,还有一个功能,就是把选中物品的状态和生命值显示出来。 它是通过下面的函数来实现: protected override IEnumerable<IRenderable> RenderSelectionBars(Actor self, WorldRenderer wr, bool …

【探索Linux】—— 强大的命令行工具 P.18(进程信号 —— 信号捕捉 | 信号处理 | sigaction() )

阅读导航 引言一、信号捕捉1. 内核实现信号捕捉过程2. sigaction() 函数&#xff08;1&#xff09;函数原型&#xff08;2&#xff09;参数说明&#xff08;3&#xff09;返回值&#xff08;4&#xff09;函数使用 二、可重入函数与不可重入函数1. 可重入函数条件2. 不可重入函…

突破界限:R200科研无人车,开辟研究新天地

提到科研无人车&#xff0c;大家可能首先想到的是其在自动驾驶和其他先进技术领域的应用。然而&#xff0c;随着科技的不断进步&#xff0c;科研无人车已经在智慧城市建设、商业服务、地质勘探、环境保护、农业技术革新、灾害应急和自动化服务等多个领域发挥着至关重要的作用。…

钢贸行业ERP系统:实现全面管理与持续增长的利器

去年在上海举办的数字化钢贸高峰论坛中提出钢贸业亟需数字化转型&#xff0c;因为在大力发展数字经济的时代背景下&#xff0c;行业进行数字化转型已经成为一种必然趋势。在今年以前&#xff0c;一些钢贸商一直沿用着以前非常粗放的管理手段&#xff0c;比如手写账本。而如果使…

揭秘近期CSGO市场小幅回暖的真正原因

揭秘近期CSGO市场小幅回暖的真正原因 最近市场小幅度回暖&#xff0c;第一个原因则是到处都在说buff要开租赁了&#xff0c;市场要开始爆燃了。童话听到这些消息实在是绷不住了&#xff0c;出来给大家讲一下自己的看法&#xff0c;大家理性思考一下。 Buff出不出租赁跟市场燃不…

【开源视频联动物联网平台】开箱即用的物联网项目介绍

写一个开箱即用的物联网项目捐献给Dromara组织 一、平台简介 MzMedia开源视频联动物联网平台&#xff0c;简单易用&#xff0c;更适合中小企业和个人学习使用。适用于智能家居、农业监测、水利监测、工业控制&#xff0c;车联网&#xff0c;监控直播&#xff0c;慢直播等场景。…

二.运算符

运算符 1.算术运算符2.比较运算符3.逻辑运算符 1.算术运算符 算数运算符主要用于数学运算&#xff0c;其可以连接运算符前后的两个数值或表达式&#xff0c;对数值或表达式进行 - * / 和 取模%运算 1.加减法运算符 mysql> SELECT 100,100 0,100 - 0,100 50,100 50 - …

良心推荐免费白嫖的电子书制作与发布平台,快来试试噢~

电子书的出现极大的改变了人们的阅读习惯&#xff0c;与传统的纸质文献相比呢&#xff0c;电子书具有存储量大、体积小、成本低、信息更新快、方便阅读等不可替代的优势&#xff0c;受到了越来越多人的喜爱。 那怎么去制作一个高级又炫酷的电子书呢&#xff1f;今天小编就专门…

java源码-数组

背景 上传图片&#xff0c;需要对图片格式进行校验&#xff0c;这是就可以使用数组 1、什么是数组&#xff1f; Java 语言中提供的数组是用来存储固定大小的同类型元素。 如&#xff1a;可以声明一个数组变量&#xff0c;如 numbers[100] 来代替直接声明 100 个独立变量 numb…

Minio开源高性能高可靠存储搭建

一、minio的特征 1、高性能 MinIO 是一种高性能、S3 兼容的对象存储。它专为大规模 AI/ML、数据湖和数据库工作负载而构建&#xff0c;并且它是由软件定义的存储。不需要购买任何专有硬件&#xff0c;就可以在云上和普通硬件上拥有分布式对象存储。MinIO拥有开源 GNU AGPL v3…

C陷阱与缺陷——第3章 语义陷阱

1. 指针和数组 C语言中只有一维数组&#xff0c;而且数组的大小必须在编译器就作为一个常数确定下来&#xff0c;然而在C语言中数组的元素可以是任何类型的对象&#xff0c;当然也可以是另外的一个数组&#xff0c;这样&#xff0c;要仿真出一个多维数组就不是难事。 对于一个…

OpenCvSharp从入门到实践-(06)创建图像

目录 1、创建图像 1.1实例1-创建黑色图像 1.2实例2-创建白色图像 1.3实例3-创建随机像素的雪花点图像 2、图像拼接 2.1水平拼接图像 2.2垂直拼接图像 2.3实例4-垂直和水平两种方式拼接两张图像 在OpenCV中&#xff0c;黑白图像其实就是一个二维数组&#xff0c;彩色图像…

vscode插件问题

1 Vscode code颜色变化 最外层标签颜色变成白色 其他标签有颜色&#xff0c;css代码颜色有些变成白色 是安装的另一个插件vue影响的&#xff0c;卸载就能恢复正常的颜色 2 配置Vue项目的代码片段 css 样式代码片段 配置css.json上后偶尔能用偶尔不能用&#xff0c;Vscode 右下…

Flutter应用程序的加固原理

在移动应用开发中&#xff0c;Flutter已经成为一种非常流行的技术选项&#xff0c;可以同时在Android和iOS平台上构建高性能、高质量的移动应用程序。但是&#xff0c;由于其跨平台特性&#xff0c;Flutter应用程序也面临着一些安全风险&#xff0c;例如反编译、代码泄露、数据…