TA-Lib学习研究笔记——Overlap Studies(二)上

news2024/11/19 15:23:29

TA-Lib学习研究笔记——Overlap Studies(二)

1. Overlap Studies 指标

['BBANDS', 'DEMA', 'EMA', 'HT_TRENDLINE', 'KAMA', 'MA', 'MAMA', 'MAVP', 'MIDPOINT', 'MIDPRICE', 'SAR', 'SAREXT', 'SMA', 'T3', 'TEMA', 'TRIMA', 'WMA']

2.数据准备

get_data函数参数(代码,起始时间,终止时间)
返回dataframe 变量df ,column如下:

ts_code,trade_date,open,high,low,close,pre_close,change,pct_chg,vol,amount

以000002代码测试,2021年的数据,程序示例:

import numpy as np
import talib as tlb
import matplotlib.pyplot as plt
import pandas as pd  
from sqlalchemy import create_engine

if __name__ == '__main__':
    #matplotlib作图设置
    plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
    plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
    
    #数据获取
    start_date = '2021-01-01'
    end_date   = '2022-01-01'
    df = get_data('000002', start_date, end_date)

3.指标学习测试

(1)BBANDS

函数名:BBANDS
名称: 布林线指标
简介:其利用统计原理,求出股价的标准差及其信赖区间,从而确定股价的波动范围及未来走势,利用波带显示股价的安全高低价位,因而也被称为布林带。
语法:

upperband, middleband, lowerband = BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)
参数:
(1)close:收盘价。
(2)timeperiod:计算的周期。
(3) nbdevup:上限价格相对于周期内标准偏差的倍数,取值越大,则上限越大,通道越宽。
(4)nbdevdn:下限价格相对于周期内标准偏差的倍数,取值越大,则下限越大,通道越宽。
(5)matype:平均值计算类型,0代表简单一定平均,还可以有加权平均等方式。

    df['upper'], df['middle'], df['lower'] = tlb.BBANDS(df['close'], timeperiod=20, nbdevup=2, nbdevdn=2, matype=0)

    # 做图
    df[['close','upper','middle','lower']].plot(title='布林线')
    plt.grid() #启用网格
    plt.legend(['close', 'upper', 'middle', 'lower']) # 设置图示
    plt.show()

执行效果:
在这里插入图片描述

(2)DEMA双指数平均线

函数名:DEMA
名称: 双移动平均线
简介:两条移动平均线来产生趋势信号,较长期者用来识别趋势,较短期者用来选择时机。正是两条平均线及价格三者的相互作用,才共同产生了趋势信号。

output = talib.DEMA(close, timeperiod)

df['DEMA'] = tlb.DEMA(df['close'], timeperiod=20)

# 做图
df[['close','DEMA']].plot(title='双移动平均线')
plt.grid() #启用网格
plt.legend(['close','DEMA']) # 设置图示
plt.show()

在这里插入图片描述

(3)EMA

函数名:EMA Exponential Moving Average
名称: 指数平均数
简介:是一种趋向类指标,其构造原理是仍然对价格收盘价进行算术平均,并根据计算结果来进行分析,用于判断价格未来走势的变动趋势。

real = EMA(close, timeperiod=20)

df['EMA'] = tlb.EMA(df['close'], timeperiod=20)

# 做图
df[['close','EMA']].plot(title='指数平均数')
plt.grid() #启用网格
plt.legend(['close','EMA']) # 设置图示
plt.show()

在这里插入图片描述

(4)HT_TRENDLINE

函数名:HT_TRENDLINE
名称: 希尔伯特瞬时变换
简介:是一种趋向类指标,其构造原理是仍然对价格收盘价进行算术平均,并根据计算结果来进行分析,用于判断价格未来走势的变动趋势。

real = HT_TRENDLINE(close)

df['HT_TRENDLINE'] = tlb.HT_TRENDLINE(df['close'])

# 做图
df[['close','HT_TRENDLINE']].plot(title='希尔伯特瞬时变换')
plt.grid() #启用网格
plt.legend(['close','HT_TRENDLINE']) # 设置图示
plt.show()

在这里插入图片描述

(5)KAMA

名称:KAMA Kaufman Adaptive Moving Average 考夫曼自适应移动平均线
简介:短期均线贴近价格走势,灵敏度高,但会有很多噪声,产生虚假信号;长期均线在判断趋势上一般比较准确,但是长期均线有着严重滞后的问题。我们想得到这样的均线,当价格沿一个方向快速移动时,短期的移动平均线是最合适的;当价格在横盘的过程中,长期移动平均线是合适的。
语法:

real = KAMA(close, timeperiod=30)

df['KAMA'] = tlb.KAMA(df['close'], timeperiod=30)

# 做图
df[['close','KAMA']].plot(title='考夫曼自适应移动平均线')
plt.grid() #启用网格
plt.legend(['close','KAMA']) # 设置图示
plt.show()

在这里插入图片描述

(6)MA

函数名:MA - Moving average 移动平均线
名称: 移动平均线
简介:移动平均线,Moving Average,简称MA,原本的意思是移动平均,由于将其制作成线形,所以一般称之为移动平均线,简称均线。它是将某一段时间的收盘价之和除以该周期。 比如日线MA5指5天内的收盘价除以5 。

语法:
real = MA(close, timeperiod=30, matype=0)

df['MA5'] = tlb.MA(df['close'], timeperiod=5, matype=0)
df['MA10'] = tlb.MA(df['close'], timeperiod=10, matype=0)
df['MA30'] = tlb.MA(df['close'], timeperiod=30, matype=0)

# 做图
df[['close','MA5','MA10','MA30']].plot(title='移动平均线')
plt.grid() #启用网格
plt.legend(['close','MA5','MA10','MA30']) # 设置图示
plt.show()

在这里插入图片描述

(7)MAMA

MAMA是MESA自适应移动平均线,全称为MESA Adaptive Moving Average。它是根据价格的移动平均线和自适应移动平均线来计算的,它的设计初衷是能够更好地适应不同市场的变化。

指标作用
MAMA指标使用了一种称为Hilbert变换的数学方法来计算价格的移动平均线。这种方法可以将价格的周期性变化进行平滑处理,减少了滞后性,使得MAMA指标能够更快地响应市场的变化。
MAMA指标由两条线组成:MAMA线和FAMA线。MAMA线是根据价格的移动平均线计算得出的,它可以显示价格的趋势方向。FAMA线是根据MAMA线计算得出的,它可以显示价格的趋势变化的速度。
MAMA指标的应用主要有两个方面:

  1. 确定趋势:当MAMA线向上穿过FAMA线时,可以视为买入信号,表示价格可能会上涨;当MAMA线向下穿过FAMA线时,可以视为卖出信号,表示价格可能会下跌。
  2. 确定超买超卖:当MAMA线超过了价格的最高点时,可以视为超买信号,表示价格可能会回调;当MAMA线低于价格的最低点时,可以视为超卖信号,表示价格可能会反弹。
    语法:

mama, fama = MAMA(close)

df['mama'], df['fama'] = tlb.MAMA(df['close'])
# 做图
df[['close','mama','fama']].plot(title='自适应移动平均线')
plt.grid() #启用网格
plt.legend(['close','mama','fama']) # 设置图示
plt.show()

在这里插入图片描述

(8)MAVP

Moving average with variable period,计算带有可变周期的移动平均线。
语法:
下面是 MAVP 函数的参数说明:

  • close: 必需参数,表示收盘价序列的数组或 pandas Series。
  • periods: 必需参数,表示要进行移动平均的周期值。它是一个包含多个周期值的数组。
  • minperiod: 可选参数,表示移动平均线计算的最小周期。默认值为 2。
  • maxperiod: 可选参数,表示移动平均线计算的最大周期。默认值为 30。
  • matype: 可选参数,表示移动平均线的类型。可以选择以下类型:
    0: 简单移动平均线(SMA)
    1: 加权移动平均线(WMA)
    2: 指数移动平均线(EMA)
    3: 光滑移动平均线(SMA with offset)默认值为 0。

real = MAVP(close, periods, minperiod=2, maxperiod=30, matype=0)

注意:periods参数必须是numpy.array ,类型必须是float ,长度与close的一致。
测试了多次,才搞明白了periods参数。开始总是报不是浮点数,periods用浮点数,报错:Exception: input array lengths are different 。
原因就是close和periods长度必须一致。

#periods 必须是numpy.array ,类型必须是float ,长度与close的一致。测试用赋值都是5,一周的交易日
length = len(df['close'])  
value = 5  
periods = np.full(length, value, dtype=float)  
 
df['MAVP'] = tlb.MAVP(df['close'], periods, minperiod=5, maxperiod=10, matype=0)

# 做图
df[['close','MAVP']].plot(title='变周期移动平均线')
plt.grid() #启用网格
plt.legend(['close','MAVP']) # 设置图示
plt.show()

在这里插入图片描述

(9)MIDPOINT - MidPoint over period

MIDPOINT函数用于计算指定期间内的中点值
语法:

real = MIDPOINT(close, timeperiod=14)

示例:

df['MIDPOINT'] = tlb.MIDPOINT(df['close'], timeperiod=14)
# 做图
df[['close','MIDPOINT']].plot(title='MidPoint over period')
plt.grid() #启用网格
plt.legend(['close','MIDPOINT']) # 设置图示
plt.show()

在这里插入图片描述

(10)MIDPRICE

MIDPRICE - Midpoint Price over period
在TA-Lib中,MIDPRICE函数用于计算指定期间内的中间价格。它基于最高价、最低价来计算一个期间内的中间价格。
参数:

  • high:一个包含最高价序列的数组或指标。
  • low:一个包含最低价序列的数组或指标。
  • timePeriod:期间长度,表示要计算中间价格的期间数。

语法:

real = MIDPRICE(high, low, timeperiod=14)

示例:


df['MIDPRICE'] = tlb.MIDPRICE(df['high'], df['low'],timeperiod=14)
# 做图
df[['high','low','MIDPRICE']].plot(title='Midpoint Price over period')
plt.grid() #启用网格
plt.legend(['high','low','MIDPRICE']) # 设置图示
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1269810.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

沿着马可·波罗的足迹,看数字云南

刚入行的时候,有位前辈跟我说过一句话:去现场“要像外国人一样去看”,重新审视那些自己可能早已“熟视无睹”的事物。 前不久,我跟随“看见数字云南——云南数字经济媒体探营活动”,奔赴昆明、大理、西双版纳等地&…

springmvc(基础学习整合)

SpringMVC是Spring框架提供的构建Web应用程序的全功能MVC模块。 在SpringMVC的各个组件中,处理器映射器、处理器适配器、视图解析器称为SpringMVC的三大组件。 springMVC基本介绍: http://t.csdnimg.cn/TOzw9 MVC是一种设计思想,将一个应…

基于ssm的汽车论坛管理系统设计与实现

基于ssm的汽车论坛管理系统设计与实现 摘要:信息化社会内需要与之针对性的信息获取途径,但是途径的扩展基本上为人们所努力的方向,由于站在的角度存在偏差,人们经常能够获得不同类型信息,这也是技术最为难以攻克的课题…

WordPress 粘贴图片上传插件

找了很久,发现一款不错的插件,允许我们直接粘贴图片文件并且上传到媒体库。以前的插件上传后媒体库不会显示,这个要显示。 启用后编辑器会有一个图标,如果开启,那么久可以截图后直接粘贴了。 学习资料源代码&#xf…

每日一题:LeetCode-283. 移动零

每日一题系列(day 08) 前言: 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 &#x1f50e…

Django大回顾 -3 之响应对象、cbv和fbv、关于类中self是谁的问题、上传文件、模版

【1】isinstance方法 判断一个对象是否是一个已知的类型。 isinstance语法: isinstance(object,classinfo) object --------- 实例化对象 cassinfo ------- 可以是字节或间接类名、基本类型,或者由他们组成的元组 相同返回True,不…

数据挖掘 感知机

要使用感知机,我们首先要引入头文件,以下是感知机用的到头文件: import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import Perceptron from sklearn.model_selection import train_test_…

【刷题】树的遍历

层序遍历 层序遍历需要用到广度有限搜索,也就是需要队列 1.将根节点加入队列、 2.如果队列不为空,就得到队列的长度,对队列中现有的元素进行访问并从队列中删除,并将其子节点加入到队列中 102. 二叉树的层序遍历 给你二叉树的根…

css浮动属性学习

在此文, html菜单的基本制作-CSDN博客 已经看到css 浮动属性的效果;下面单独看一下浮动属性; 做4个div,设置不同的背景色,不为div添加float属性;效果如下; 因为div是块级元素,默认…

开源播放器GSYVideoPlayer + ViewPager2 源码解析

开源播放器GSYVideoPlayer ViewPager2 源码解析 前言一、GSYVideoPlayer🔥🔥🔥是什么?二、源码解析1.ViewPager2Activity 总结 前言 本文介绍GSYVideoPlayer源码中关于ViewPager2 GSYVideoPlayer 实现的滑动播放列表的实现原理。…

(C++)复写零--双指针法

个人主页:Lei宝啊 愿所有美好如期而遇 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台备战技术面试?力扣提供海量技术面试资源,帮助你高效提升编程技能,轻松拿下世界 IT 名企 Dream Offer。https://le…

enote笔记法之附录1——“语法词”(即“关联词”)(ver0.24)

enote笔记法之附录1——“语法词”(即“关联词”)(ver0.24) 最上面的是截屏的完整版,分割线下面的是纯文字版本: 作者姓名(本人的真实姓名):胡佳吉 居住地&#xff1…

A*算法学习

系列文章目录 前言 在总结 2023华为软件精英挑战赛——全赛段思路分享与总结 - 知乎 (zhihu.com)时,发现自己还有很多技术细节没搞懂,这里看静态全局路径规划最常见的A*算法,这个博主讲得很好: A-Star(A*&#xff0…

AI模特换装的前端实现

本文作者为 360 奇舞团前端开发工程师 随着AI的火热发展,涌现了一些AI模特换装的前端工具(比如weshop网站),他们是怎么实现的呢?使用了什么技术呢?下文我们就来探索一下其实现原理。 总体的实现流程如下&am…

HarmonyOS将程序下载并运行到真机上 (华为手机为例)

前面的文章 我们讲到过一些关于这个预览器的操作 可以在上面看到我们代码的一个整体效果 但其实 这边可以真实的运行在我们自己的手机上 因为你这个预览器再好 还是和实际的手机环境有所偏差 首先 我们要设置一下手机 我们在设置中 找到 关于手机 然后 这下面 有一个 Harmo…

如何使用阿里云虚拟主机和域名设置网站?

本文档将向您展示如何使用阿里云虚拟主机来设置一个新网站,并完成一个域名。如果您按照此处的步骤操作,您将启动并运行一个新网站,可以使用您选择的名称在全球范围内访问,并托管在阿里云平台上。 本文档假设您已经拥有有效的阿里…

uView ui 1x uniapp 表格table行内容长度不一导致高度不统一而出现的不对齐问题

问题 因为td单元格内空长度不定导致行单元格未对齐 解决&#xff1a; 重置td的高度&#xff1a;height:100% 改为height:auto !import <u-table><u-tr v-for"(item,index) in Lineinfo.Cust_Name" ><u-td style"height: auto !important;back…

ABAP2XLSX 的安装和demo

ABAP2XLSX 是一个git上面的很好用的工具&#xff0c;它可以帮助abaper们更方便&#xff0c;更简单的生成各种各样复杂的自定义的excel&#xff0c;以满足各企业的信息化建设 在安装这个之前&#xff0c;请先查看之前的博客&#xff0c;去安装abapgit abap2xlsx地址&#xff1…

vue3通过el-dropdown实现动态菜单切换页面

这是效果图 首先是主页index.vue <template><el-row><el-col :span"20"><!-- 顶部菜单 --><div v-if"showTop"><topmenu /></div><!-- 右侧下方区域动态切换的内容 --><div style"flex: 1;&quo…

Python GUI编程:dearpygui和tkinter的对比与选择详解

概要 随着Python在GUI(图形用户界面)编程中的不断发展&#xff0c;出现了许多优秀的库&#xff0c;如dearpygui和tkinter。 这两个库在许多方面都有所不同&#xff0c;不仅是在功能方面&#xff0c;还在设计哲学和用途上。 本文将对比这两个库&#xff0c;并使用Python代码举…