基于yolov2深度学习网络的打电话行为检测系统matlab仿真

news2025/1/21 15:32:03

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1、YOLOv2网络原理

4.2、基于YOLOv2的打电话行为检测

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

................................................................................
% 加载预训练的 ResNet-50 模型
load Model_resnet50.mat
 
% 用于目标检测的特征层
featureLayer = 'activation_40_relu';
% 构建 YOLOv2 网络
lgraph       = yolov2Layers(image_size,num_classes,anchor_boxes,Initial_nn,featureLayer);

options = trainingOptions('sgdm', ...
    'MiniBatchSize', 8, ....
    'InitialLearnRate',1e-3, ...
    'MaxEpochs',100,...
    'CheckpointPath', checkpoint_folder, ...
    'Shuffle','every-epoch', ...
    'ExecutionEnvironment', 'gpu');% 设置训练选项
% 训练 YOLOv2 目标检测器
[detector,info] = trainYOLOv2ObjectDetector(train_data,lgraph,options);
save yolov2.mat detector
86

4.算法理论概述

     打电话行为是一种常见的日常行为,但在某些场合下,如驾驶、会议等,打电话行为可能会带来安全隐患或影响工作效率。因此,研究一种能够实时检测打电话行为的方法具有重要意义。传统的打电话行为检测方法主要基于传感器或图像处理技术,但存在精度低、实时性差等问题。

4.1、YOLOv2网络原理

       近年来,深度学习技术在目标检测领域取得了显著进展。其中,YOLO系列算法是一种基于深度学习的实时目标检测算法,具有速度快、精度高等优点。YOLOv2是YOLO系列的第二代算法,相比于第一代算法,在速度和精度上都有所提升。此外,卷积神经网络(CNN)是深度学习中常用的模型之一,具有强大的特征提取能力。因此,本文选择YOLOv2和CNN作为打电话行为检测的基础算法和模型。

      YOLOv2是一种实时目标检测算法,其核心思想是将目标检测任务看作一个回归问题,通过单次前向传播即可完成检测。相比于其他目标检测算法,YOLOv2具有更高的检测速度和较好的准确性。以下是YOLOv2网络的主要原理:

       网络结构:YOLOv2采用Darknet-19作为基础网络,该网络由19个卷积层和5个最大池化层组成,具有较快的运算速度和较低的计算复杂度。

       批量归一化(Batch Normalization):YOLOv2在网络中加入批量归一化层,减少内部协变量的移动,使网络更加稳定,加速收敛。

        其基本结构如下所示:

       YOLOv2引入了多尺度训练方法,通过在网络输入端随机调整图像大小,提高网络对不同尺度目标的检测能力。

4.2、基于YOLOv2的打电话行为检测

       本文提出的打电话行为检测方法主要分为两个阶段:训练阶段和检测阶段。在训练阶段,我们使用标注好的数据集对YOLOv2网络进行训练,使其能够识别出打电话行为。在检测阶段,我们使用训练好的YOLOv2网络对输入的视频帧进行检测,识别出其中的打电话行为。

       具体来说,我们的方法包括以下几个步骤:

       数据预处理:对标注好的数据集进行预处理,包括图像增强、归一化等操作,以提高模型的泛化能力。
       网络构建:构建基于YOLOv2的深度学习网络,包括特征提取网络和检测网络两部分。特征提取网络采用卷积神经网络(CNN),用于提取输入图像的特征;检测网络采用YOLOv2算法,用于对提取的特征进行目标检测。
        网络训练:使用标注好的数据集对网络进行训练,优化网络的参数,使其能够识别出打电话行为。在训练过程中,我们采用随机梯度下降(SGD)算法进行优化,并使用交叉验证方法对模型的性能进行评估。
       行为检测:使用训练好的网络对输入的视频帧进行检测,识别出其中的打电话行为。具体来说,我们将视频帧输入到网络中,经过特征提取和目标检测两个步骤后,得到检测结果。如果检测结果中存在打电话行为的类别,则认为该帧中存在打电话行为。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1268765.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MEFLUT: Unsupervised 1D Lookup Tables for Multi-exposure Image Fusion

Abstract 在本文中,我们介绍了一种高质量多重曝光图像融合(MEF)的新方法。我们表明,曝光的融合权重可以编码到一维查找表(LUT)中,该表将像素强度值作为输入并产生融合权重作为输出。我们为每次…

后端项目连接数据库-添加MyBatis依赖并检测是否成功

一.在pom.xml添加Mybatis相关依赖 在Spring Boot项目中&#xff0c;编译时会自动加载项目依赖&#xff0c;然后使用依赖包。 需要在根目录下pom.xml文件中添加Mybatis依赖项 <!-- Mybatis整合Spring Boot的依赖项 --> <dependency><groupId>org.mybatis.s…

【数据结构】——堆排序

前言&#xff1a;我们已经学习了堆以及实现了堆&#xff0c;那么我们就来给堆进行排序。我们怎么来进行排序呢&#xff1f;这一次我们就来解决这个问题。 如果我们堆排序要求排序&#xff0c;我们是建立大堆还是小堆呢&#xff0c;如果我们建的小堆的话&#xff0c;那我们在排序…

[PyTorch][chapter 3][李宏毅深度学习-偏差,方差,过拟合,欠拟合]

前言&#xff1a; 这章的目的主要是通过诊断错误的来源,通过错误的来源去优化,挑选模型。 通过本章掌握 过拟合(overfitting)和欠拟合(underfitting)出现原因及解决方案. 目录&#xff1a; 1 概述 2 方差,偏差现象 3 过拟合和欠拟合 4 模型选择 5 概率论回顾 一 概…

微信小程序获取手机号上限,怎么处理比较省钱

微信新规 微信2023年改了规则&#xff0c;原本免费的小程序获取手机号&#xff0c;现在如果要获取要1分钱一条。 有些小程序的用户非常恐怖&#xff0c; 比如一些工具类的&#xff0c; 群发类的。如果进入小程序就必须要获取小程序&#xff0c;就像是无底洞&#xff0c;让运营…

基于Java SSM框架实现高校二手交易平台系统项目【项目源码+论文说明】计算机毕业设计

基于java的SSM框架实现高校二手交易平台系统演示 摘要 本论文主要论述了如何使用JAVA语言开发一个高校二手交易平台&#xff0c;本系统将严格按照软件开发流程进行各个阶段的工作&#xff0c;采用B/S架构&#xff0c;面向对象编程思想进行项目开发。在引言中&#xff0c;作者将…

token认证机制,基于JWT的Token认证机制实现,安全性的问题

文章目录 token认证机制几种常用的认证机制HTTP Basic AuthOAuthCookie AuthToken AuthToken Auth的优点 基于JWT的Token认证机制实现JWT的组成认证过程登录请求认证 对Token认证的五点认识JWT的JAVA实现 基于JWT的Token认证的安全问题确保验证过程的安全性如何防范XSS Attacks…

网络篇---第七篇

系列文章目录 文章目录 系列文章目录前言一、什么是长连接和短连接?二、长连接和短连接的优缺点?三、说说长连接短连接的操作过程前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分…

鸿蒙4.0开发笔记之ArkTS装饰器语法基础@Builder组件内自定义构建函数与@Styles自定义组件重用样式(十)

文章目录 一、Builder自定义构建函数1、什么是自定义构建函数2、组件内定义构建函数3、组件外定义构建函数4、Builder装饰器练习 二、Styles重用样式函数1、重用样式的作用2、组件内定义Styles3、组件外定义4、Styles装饰器练习5、注意要点 一、Builder自定义构建函数 1、什么…

hql面试题之上海某资深数仓开发工程师面试题-求不连续月份的月平均值

1.题目 A,B两组产品的月平均值&#xff0c;月平均值是当月的前三个月值的一个平均值&#xff0c;注意月份是不连续的&#xff0c;如果当月的前面的月份不存在&#xff0c;则为0。如A组2023-04的月平均值为2023年1月的数据加2023-02月的数据的平均值&#xff0c;因为没有其他月…

redis的过期策略以及定时器的实现

Redis是客户端服务器结构的程序&#xff0c;客户端与服务器通过网络通信&#xff0c;所以对于keys *这种的操作在大型企业中不太建议&#xff0c;生产环境下的key会非常多&#xff0c;Redis是但现成的服务器&#xff0c;执行keys*的时间非常长&#xff0c;就会导致redis服务器阻…

Linux系统-----进程管理(进程的创建与控制)

目录 前言 进程 1.基本概念 2.特征 3.Linux系统的进程 进程的创建 1. fork()函数 2. 多进程的创建与输出 进程的控制 1. exec()系列 2. wait() 函数 3. execl( )和fork( )联合使用 4. exit&#xff08; &#xff09; 前言 前面我们学习了Linux系统的基本指令以及如…

软文推广中什么样的热点值得追?

只要媒体存在一日&#xff0c;那世界上就不会缺热点&#xff0c;追热点应该是每个运营er的必备技能&#xff0c;但是市面上的热点层出不穷&#xff0c;什么样的热点才值得追呢&#xff1f;接下来媒介盒子就和大家聊聊&#xff1a;判断热点值不值得追的三大要素。 一、 事件属性…

【机器学习 | 可视化】回归可视化方案

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…

Redis 通用命令和数据类型

get和set get和set两个命令是最基本也是最常用的命令&#xff0c;主要用于操作字符串类型的数据。 1.SET 命令: SET 命令用于设置指定 key 的值。如果 key 已经持有其他值&#xff0c;SET 就覆写旧值&#xff0c;无视类型。具体的命令格式如下&#xff1a; SET key value例如…

在PyCharm中配置PyQt5环境

在PyCharm中配置PyQt5环境 文章目录 1.安装第三方库2.PyQt5设计器3.PyUIC转换工具 &#x1f339;꧔ꦿ&#x1f339;꧔ꦿ&#x1f339;꧔ꦿ&#x1f339;꧔ꦿ&#x1f339;꧔ꦿ&#x1f339;꧔ꦿ&#x1f339;꧔ꦿ&#x1f339;꧔ꦿ&#x1f339;꧔ꦿ&#x1f339;꧔ꦿ&#x1…

redis 内存机制探索篇

info memory 查看redis 内存使用情况出现的问题&#xff0c;公司在导入大量redis key 的时候&#xff0c;想要看一下redis 内存使用情况 &#xff0c;发现used_memory_peak_perc 和 used_memory_dataset_perc 马上达到100%&#xff0c;这个时候很慌张&#xff0c;是不是当前red…

FreeRTOS学习之路,以STM32F103C8T6为实验MCU(2-12:内存管理)

学习之路主要为FreeRTOS操作系统在STM32F103&#xff08;STM32F103C8T6&#xff09;上的运用&#xff0c;采用的是标准库编程的方式&#xff0c;使用的IDE为KEIL5。 注意&#xff01;&#xff01;&#xff01;本学习之路可以通过购买STM32最小系统板以及部分配件的方式进行学习…

王道p18 04.从有序顺序表中删除其值在给定值s与1之间(要求s<1)的所有元素,若s或t不合理或顺序表为空,则显示出错信息并退出运行。(c语言代码实现)

视频讲解在这里哦&#xff08;感谢支持&#xff01;&#xff09;&#x1f447; p18 第四题王道数据结构课后算法题&#xff08;c语言代码实现&#xff09;_哔哩哔哩_bilibili 本题代码如下 void deletest(struct sqlist* L, int s, int t) {int i 0;int j 0;if (s > t …

使用 graph_tool 绘制网络关系图

目标 使用python的graph_tool包&#xff0c;根据以下表格&#xff0c;生成网络关系图。 采样方法大类小类低空遥感解译地面裸土地,人工地面地面影像解译水生植物水葫芦,荷叶,苦草,黑藻,水华,水白菜RTK测量禾本植物狗牙根,华克拉莎,斑茅,苔草,芦苇,芦竹,杂茅RTK测量竹风箱树,马…