数学建模-基于LightGBM和BP神经网络的互联网招聘需求分析与预测

news2024/11/23 18:56:44

基于LightGBM和BP神经网络的互联网招聘需求分析与预测

整体求解过程概述(摘要)

  就业是民生之本,是发展之基,也是安国之策。2020 年新冠肺炎疫情的爆发,稳就业成为应对疫情、稳定社会的重要保障之一。随着数据新动能的发展,互联网招聘为招聘者和应聘者提供不限于时空的全局视角,因此本文从该角度出发对招聘者和应聘者需求进行统计分析预测,以期缓解就业难、招聘难的困境。
  本文基于近年来各在线招聘网站所发布的招聘数据并结合数据新动能下转型升级的三个金融行业、互联网行业、生产制造行业,采用 Pearson 相关系数检验初步筛选后运用灰色关联分析进一步进行指标筛选,最后对企业招聘中招聘者关注的浏览量运用 LightGBM 模型进行浏览量特征重要性分析,对就业形势中应聘者关注的薪资运用 BP 神经网络预测模型对于薪资进行预测,并进行模型精度对比,得出数据新动能下三个行业的薪资统计分析预测。
  经研究得出关于企业招聘浏览量,金融行业薪资水平,互联网行业薪资水平,生产制造行业薪资水平的影响因素及重要程度。基于以上分析结论,本文在互联网招聘市场中对招聘者与应聘者需求提出以下对策建议:第一,对于企业,招聘者应根据岗位浏览量合理设置招聘要求;第二,对于金融行业,应聘者应根据学历因素合理考虑就业地域;第三,对于互联网行业,应聘者应根据学历因素合理考虑公司性质;第四,对于生产制造行业,应聘者应根据公司所在地合理考虑公司性质。

问题分析

  基于当代数字经济大环境背景,面对当前互联网市场应聘者和招聘者需求不对称的现状,本文运用近年来各在线招聘网站所发布的招聘数据并结合数据新动能下转型升级的三个金融行业、互联网行业、生产制造行业,采用 Pearson 相关系数分析初步筛选后运用灰色关联分析进一步进行维度筛选,最后对企业招聘中招聘者关注的浏览量运用 LightGBM 模型进行特征重要性分析,对就业形势中应聘者关注的薪资运用 BP 神经网络预测模型对于薪资进行预测,并进行模型检验与修正,得出新动能下三个行业的薪资和浏览量的分析与预测。
在这里插入图片描述

指标的选取与数据的处理

  (一)数据来源
  本文数据通过对某数据平台的数据进行爬取,总共得到 1007894 条数据。数据预处理以 excel 为主,Python、R 为辅,完成原始数据去重区空以及数值转换等数据预处理工作之后进行分层随机抽样得到剩下 40000 条数据进行统计分析。对于异常值的处理,学历、职位、行业等因素使用删除异常值方法处理,经验年数、工资上下限因素使用计算平均值方法进行处理。分层抽样法,也叫类型抽样法。将总体单位按其属性特征分成若干类型或层,然后在类型或层中随机抽取样本单位。分层抽样法的特点是通过划类分层,增大了各类分层抽样中单位间的共同性,容易抽出具有代表性的调查样本。该方法适用于总体情况复杂,各单位之间差异较大,单位较多的情况。分层随机抽样的程序是把总体各单位分成两个或两个以上的相互独立且各具特点的完全的组,再从两个或两个以上的组中分别进行随机抽样。分组的标志或特点与所关心的总体特征相关。“所学非所用”不利于充分发挥人力资本的潜在价值(郭睿,2019),本文以学历作为属性特征进行分层,将不同学历分出不同层,按各学历占总数据的比例在每一层中随机抽样,得出 40000 条数据。
  并通过划分行业来分别选取每个行业中的指标进行分析预测,金融行业的发展是一个国家经济发展的重要支撑(高景文,2019),互联网行业则为数字化时代背景下一个重要的行业支撑(周蕴慧,2021),生产制造行业的转型升级也是当今时代面临的重大课题(江小涓,2020),这三个行业都对数据新动能背景下招聘与就业需求不对称的统计分析研究具有一定意义,因此本文选取这三种行业进行统计分析预测。
  而对于大多数互联网应聘者而言,薪资是众多被考虑因素中的重中之重,是其劳动回报的直接体现(Kristin L ,2018),对于企业而言,应聘者的薪资与其经营的利润以及成本是直接相关的关系。因此选取三个行业薪资平均值与其他指标进行分析。

  (二)指标选取
  1. Pearson 相关系数检验
  Pearson 相关系数是用协方差除以两个变量的标准差得到的,虽然协方差能反映两个随机变量的相关程度(协方差大于 0 的时候表示两者正相关,小于 0 的时候表示两者负相关),但是协方差值的大小并不能很好地度量两个随机变量的关联程度,对于标准化后的数据求欧氏距离平方并经过简单的线性变化,也就是Pearson 系数,我们一般用欧式距离来衡量向量的相似度,但欧式距离无法考虑不同变量间取值的差异。加之,Pearson 相关系数适用于高维度检验,而未经升级的欧式距离以及 cosine 相似度,对变量的取值范围是敏感的,在使用前需要进行适当的处理。因此在对变量间进行相关性检验时,本文优先采用 Pearson 相关系数检验去研究经验,学历,公司所在地,公司性质,职位分别和薪资平均值之间的相关关系,使用 Pearson 相关系数去表示相关关系的强弱情况。具体分析可知:
  ①金融行业:经验、学历、职位、公司所在地呈现显著性
在这里插入图片描述
  ②互联网行业:经验、学历、职位、公司所在地、公司性质呈现显著性
在这里插入图片描述
  ③生产制造行业:经验、学历、公司所在地、公司性质呈现显著性

在这里插入图片描述
  2. 灰色关联分析
  基于 Pearson 相关系数检验得出的结果,本文进一步对具有显著性的各个特征值进行选取。运用灰色关联分析对于研究指标进行进一步选取,研究各因素对薪资的影响大小关系,得出结果如下:
  ①金融行业:公司所在地、职位

在这里插入图片描述
  从上表可以看出:针对本次 4 个评价项,公司所在地的综合评价最高(关联度为:0.989),其次是职位(关联度为:0.670)。
  ②互联网行业:学历、公司性质
在这里插入图片描述
  从上表可以看出:针对本次 5 个评价项,学历的综合评价最高(关联度为:0.928),其次是公司性质(关联度为:0.909)。
  ③生产制造行业:公司所在地、公司性质

在这里插入图片描述
  从上表可以看出:针对本次 4 个评价项,公司所在地的综合评价最高(关联度为:0.959),其次是公司性质(关联度为:0.953)

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:(代码和文档not free)

%% 网络测试
an=sim(net,inputn_test); %用训练好的模型进行仿真
test_simu=mapminmax('reverse',an,outputps); % 预测结果反归一化
error=test_simu-output_test; %预测值和真实值的误差
%%真实值与预测值误差比较
figure
plot(output_test,'bo-','linewidth',1.2)
hold on
plot(test_simu,'r*-','linewidth',1.2)
legend('期望值','预测值')
xlabel('测试样本编号'),ylabel('指标值')
title('BP 测试集预测值和期望值的对比')
set(gca,'fontsize',12)
igure
plot(error,'ro-','linewidth',1.2)
xlabel('测试样本编号'),ylabel('预测偏差')
title('BP 神经网络测试集的预测误差')
set(gca,'fontsize',12)
%计算误差
[~,len]=size(output_test);
SSE1=sum(error.^2);
MAE1=sum(abs(error))/len;
MSE1=error*error'/len;
RMSE1=MSE1^(1/2);
MAPE1=mean(abs(error./output_test));
r=corrcoef(output_test,test_simu); %corrcoef 计算相关系数矩阵,包括自相关和
互相关系数
R1=r(1,2); 
%% 初始化
clear
close all
clc
format short
%% 读取读取
data=xlsread('数据总.xlsx','Sheet1','A1:F18528'); %%使用 xlsread 函数读取 EXCEL
中对应范围的数据即可 
%输入输出数据
input=data(:,1:end-1); %data 的第一列-倒数第二列为特征指标
output=data(:,end); %data 的最后面一列为输出的指标值
N=length(output); %全部样本数目
testNum=50; %设定测试样本数目
trainNum=N-testNum; %计算训练样本数目
%% 划分训练集、测试集
input_train = input(1:trainNum,:)';
output_train =output(1:trainNum)';
input_test =input(trainNum+1:trainNum+testNum,:)';
output_test =output(trainNum+1:trainNum+testNum)';
%% 数据归一化
[inputn,inputps]=mapminmax(input_train,0,1);
[outputn,outputps]=mapminmax(output_train);
inputn_test=mapminmax('apply',input_test,inputps);
%% 获取输入层节点、输出层节点个数
inputnum=size(input,2);
outputnum=size(output,2);
disp('/')
disp('神经网络结构...')
disp(['输入层的节点数为:',num2str(inputnum)])
disp(['输出层的节点数为:',num2str(outputnum)])
disp(' ')
disp('隐含层节点的确定过程...')
%确定隐含层节点个数
%采用经验公式 hiddennum=sqrt(m+n)+a,m 为输入层节点个数,n 为输出层节点
个数,a 一般取为 1-10 之间的整数
MSE=1e+5; %初始化最小误差
transform_func={'tansig','purelin'}; %激活函数
train_func='trainlm'; %训练算法
for 
hiddennum=fix(sqrt(inputnum+outputnum))+1:fix(sqrt(inputnum+outputnum))+10
%构建网络
net=newff(inputn,outputn,hiddennum,transform_func,train_func);
% 网络参数
net.trainParam.epochs=1000; % 训练次数
net.trainParam.lr=0.01; % 学习速率
net.trainParam.goal=0.000001; % 训练目标最小误差
% 网络训练
net=train(net,inputn,outputn);
an0=sim(net,inputn); %仿真结果
mse0=mse(outputn,an0); %仿真的均方误差
disp([' 隐含层节点数为 ',num2str(hiddennum),' 时,训练集的均方误差为:
',num2str(mse0)])
%更新最佳的隐含层节点
if mse0<MSE
MSE=mse0;
hiddennum_best=hiddennum;
end
end
disp(['最佳的隐含层节点数为:',num2str(hiddennum_best),',相应的均方误差为:
',num2str(MSE)])
%% 构建最佳隐含层节点的 BP 神经网络
net=newff(inputn,outputn,hiddennum_best,transform_func,train_func);
% 网络参数
net.trainParam.epochs=1000; % 训练次数
net.trainParam.lr=0.01; % 学习速率
net.trainParam.goal=0.000001; % 训练目标最小误差
%% 网络训练
net=train(net,inputn,outputn);
%% 网络测试
an=sim(net,inputn_test); %用训练好的模型进行仿真
test_simu=mapminmax('reverse',an,outputps); % 预测结果反归一化
error=test_simu-output_test; %预测值和真实值的误差
%%真实值与预测值误差比较
figure
plot(output_test,'bo-','linewidth',1.2)
hold on
plot(test_simu,'r*-','linewidth',1.2)
legend('期望值','预测值')
xlabel('测试样本编号'),ylabel('指标值')
title('BP 测试集预测值和期望值的对比')
set(gca,'fontsize',12)
figure
plot(error,'ro-','linewidth',1.2)
xlabel('测试样本编号'),ylabel('预测偏差')
title('BP 神经网络测试集的预测误差')
set(gca,'fontsize',12)
%计算误差
[~,len]=size(output_test);
SSE1=sum(error.^2);
MAE1=sum(abs(error))/len;
MSE1=error*error'/len;
RMSE1=MSE1^(1/2);
MAPE1=mean(abs(error./output_test));
r=corrcoef(output_test,test_simu); %corrcoef 计算相关系数矩阵,包括自相关和
互相关系数
R1=r(1,2); 
disp(' ')
disp('/')
disp('预测误差分析...')
disp(['误差平方和 SSE 为: ',num2str(SSE1)])
disp(['平均绝对误差 MAE 为: ',num2str(MAE1)])
disp(['均方误差 MSE 为: ',num2str(MSE1)])
disp(['均方根误差 RMSE 为: ',num2str(RMSE1)])
disp(['平均百分比误差 MAPE 为: ',num2str(MAPE1*100),'%'])
disp(['相关系数 R 为: ',num2str(R1)])
%打印结果
disp(' ')
disp('/')
disp('打印测试集预测结果...')
disp([' 编号 实际值 预测值 误差'])
for i=1:len
disp([i,output_test(i),test_simu(i),error(i)])
end
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1266145.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2023年全国硕士研究生入学统一考试管理类专业学位联考数学试题——解析版

文章目录 一、问题求解&#xff1a;真题&#xff08;2023-01&#xff09;-应用题-比例真题&#xff08;2023-02&#xff09;-应用题-利润真题&#xff08;2023-03&#xff09;-算术-分式真题&#xff08;2023-04&#xff09;-算术-有无理数真题&#xff08;2023-05&#xff09;…

let const 与var的区别

1、let可以形成块级作用域&#xff0c;在es6之前javascript只有函数作用域&#xff0c;没有块级作用域。在es6之前实现块级作用域: 2、可以看到通过一个立即执行函数表达式&#xff0c;我们实现了一个局部作用域或者块级作用域&#xff0c;但是有了let之后就不需要写这样的代…

从0开始学习JavaScript--JavaScript 箭头函数

JavaScript的现代语法&#xff0c;箭头函数&#xff08;Arrow Functions&#xff09;是一个不可忽视的重要部分。它们不仅提供了更简洁的语法&#xff0c;还改变了函数的作用域规则。在这篇文章中&#xff0c;将深入研究JavaScript箭头函数的概念、语法、用法以及它们与传统函数…

source: command not found错误的解决方法

偶遇的一个问题&#xff0c;因为在网上没有找到对应的解决办法&#xff0c;可能是属于个案&#xff0c;在此记录备忘&#xff0c;同时供大家参考。 问题现象&#xff1a; 执行命令 source /etc/profile时报错&#xff1a; bash: “source: command not found... 问题定位和…

电子签名软件,在教育行业中如何应用?

电子签名软件简化签署流程&#xff0c;降低签署门槛&#xff0c;让更多人便捷地参与到签署中来。 微签作为国内电子签名软件的拓荒者之一&#xff0c;拥有19年的研发应用经验&#xff0c;提供专业的企业电子签名服务。微签的电子签名软件广泛应用于审批场景&#xff0c;实现高…

Dropdown下拉菜单(antd-design组件库)简单用法和禁用菜单

1.Dropdown下拉菜单 向下弹出的列表。 2.何时使用 当页面上的操作命令过多时&#xff0c;用此组件可以收纳操作元素。点击或移入触点&#xff0c;会出现一个下拉菜单。可在列表中进行选择&#xff0c;并执行相应的命令。 用于收罗一组命令操作。 Select 用于选择&#xff0c;而…

C++: String类接口学习

文章目录 STL简介一. 为什么要有string类二. STL 中的 string 类介绍1. string 类描述2. 关于 basic_string 三. string 类的常用接口1. string 类的常见构造2. string 类的容量操作size 和 lengthcapacitymax_sizereserveresize 3. string 类对象的访问及遍历操作operator[] 和…

酷开系统 | 酷开科技聚焦价值人群 助力营销增长

2023年&#xff0c;是消费复苏回暖的一年&#xff0c;市场中充溢着大量品牌重启增长的机遇与实例。品牌商期望能够把握住市场趋势&#xff0c;通过营销获得确定性的业绩提升&#xff0c;并在未来收获长期稳定的增长。作为数字媒介的代表之一&#xff0c;OTT大屏营销的属性和价值…

深入浅出 Vue 中的插槽 slot

深入浅出 Vue 中的插槽 slot start 最近被问到好几次 Vue 中的插槽相关知识&#xff0c;掌握的还是有些不全面。抱着重新学习的心态&#xff0c;写这篇博客。首先对基础知识做一个回顾&#xff0c;然后再对源码实现做一个学习。作者&#xff1a;番茄编写时间&#xff1a;2023…

泄密零容忍!迅软科技打造设计图纸安全防线,助您无忧创作!

对于建筑设计、鞋服设计、动漫设计、平面设计等设计行业而言&#xff0c;海量设计图纸都以电子数据的形式存在企业的终端电脑上&#xff0c;这些图纸蕴含着企业的核心竞争资源&#xff0c;一旦泄露将给企业带来巨大的经济损失。 因此&#xff0c;迅软科技采用了先进的数据加密技…

自写一个函数将js对象转为Ts的Interface接口

如今的前端开发typescript 已经成为一项必不可以少的技能了&#xff0c;但是频繁的定义Interface接口会给我带来许多工作量&#xff0c;我想了想如何来减少这些非必要且费时的工作量呢&#xff0c;于是决定写一个函数&#xff0c;将对象放进它自动帮我们转换成Interface接口&am…

嵌入式总线技术详解

1. 总线概述 1.1 总线定义 总线&#xff08;Bus&#xff09;是计算机各种功能部件之间传送信息的公共通信干线它是由导线组成的传输线束&#xff0c;按照计算机所传输的信息种类&#xff0c;计算机的总线可以划分为数据总线、地址总线和控制总线&#xff0c;分别用来传输数据…

20天GMV超过百万美金!桌下迷你跑步机在TikTok Shop美国站热销

上周总GMV达到1.59亿美元&#xff0c;达到历史新高&#xff0c;是美国站自开通以来首次单周出单达到亿级&#xff1b;日均出单1660万美元&#xff0c;单日出单最高达2820万美元&#xff1b; 截至11月19日&#xff0c;GMV Top 5 的商品分类排名依次为&#xff1a;美妆个护、女士…

【vue脚手架配置代理+github用户搜索案例+vue项目中常用的发送Ajax请求的库+slot插槽】

vue脚手架配置代理github用户搜索案例vue项目中常用的发送Ajax请求的库slot插槽 1 vue脚手架配置代理2 github用户搜索案例2.1 静态列表2.2 列表展示2.3 完善案例 3 vue项目中常用的发送Ajax请求的库3.1 xhr3.2 jQuery3.3 axios3.4 fetch3.5 vue-resource 4 slot 插槽4.1 效果4…

【嵌入式】开源shell命令行的移植和使用(1)——nr_micro_shell

目录 一 背景说明 二 移植准备 三 移植过程 四 实际使用 一 背景说明 在进行调试和维护时&#xff0c;常常需要与单片机进行交互&#xff0c;获取、设置某些参数或执行某些操作&#xff0c;nr_micro_shell正是为满足这一需求&#xff0c;针对资源较少的MCU编写的基本命令行…

VT-MRPA1-151-1X/V0/0控制2FRE16模块式模拟放大器

适用于控制带有电气位置反馈的直动式比例减压阀&#xff08;DBETR- 1X 类型&#xff09;或带有电气位置反馈的比例流量控制阀&#xff08;2FRE... 类型&#xff09;&#xff1b;控制值输入 1 0 V&#xff08;差动输入&#xff09;&#xff1b; 可分别调节“上/下”斜坡时间的斜…

计算机网络:快速了解网络框架

文章目录 前言一、什么是Internet&#xff1f;1.从具体构成角度什么是协议&#xff1f; 2.从服务角度3小结 二、网络边缘1.采用网络设施面向连接服务&#xff08;TCP&#xff09;2.采用基础设施的无连接服务&#xff08;UDP&#xff09; 三、网络的核心1.电路交换2.分组交换3.分…

vue2 el-table 封装

vue2 el-table 封装 在 custom 文件夹下面创建 tableList.vue直接上代码&#xff08;代码比较多&#xff0c;复制可直接用&#xff09; <template><div class"mp-list"><el-tableref"multipleTable"class"mp-custom-table":dat…

一起学docker系列之十二什么是dockerfile

目录 1 基本概念2 语法规则3 Dockerfile构建步骤4 Dockerfile、Docker镜像和Docker容器的关系5 保留字介绍5.1 FROM5.2 MAINTAINER5.3 RUN5.4 EXPOSE5.5 WORKDIR5.6 USER5.7 ENV5.8 ADD5.9 COPY5.10 VOLUME5.11 CMD5.12 ENTRYPOINT 6 总结7 参考地址 1 基本概念 Dockerfile是一…

cpu飙升问题排查以及解决

1、查看内存占用排行 top -c 2、查看服务器内存使用情况 free -h 3、查看文件夹磁盘空间大小 Linux 查看各文件夹大小命令du -h --max-depth1 (1)查看文件目录一级目录磁盘空间 du -h --max-depth1 (2&#xff09;查看指定文件目录 du sh home --max-depth2 4、Linux下…