Unity中Shader的BRDF解析(四)

news2024/11/18 1:35:58

文章目录

  • 前言
  • 一、BRDF 中的 IBL
  • 二、解析一下其中的参数
    • 1、光照衰减系数 :surfaceReduction
    • 2、GI镜面反射在不同角度下的强弱 :gi.specular * FresnelLerp (specColor, grazingTerm, nv);
    • 在BRDF中,IBL(Image Based Light)对最终效果有着重要的作用,可以模拟出反射 Cubemap 的效果,可以实现在不同环境中,不需要调节参数只需要修改 Cubemap 就达到模拟物理反射的效果。
    • BRDF2 和 BRDF3 只是对 BRDF1 性能上的妥协
  • 三、最终效果
    • 最终代码\


前言

在上一篇文章中,我们解析了BRDF中的 镜面反射,这篇文章我们继续解析BRDF中的 IBL(Image Based Lighting 基于图像的光照)

  • Unity中Shader的BRDF解析(三)

一、BRDF 中的 IBL

在这里插入图片描述

//IBL(Image Based Lighting)基于图像的光照
//surfaceReduction : 衰减
//gi.specular : 间接光中的镜面反射
//FresnelLerp : 镜面反射在不同角度下的过度
half3 ibl = surfaceReduction * gi.specular * FresnelLerp (specColor, grazingTerm, nv);


二、解析一下其中的参数

1、光照衰减系数 :surfaceReduction

// surfaceReduction = Int D(NdotH) * NdotH * Id(NdotL>0) dH = 1/(roughness^2+1)
half surfaceReduction;
# ifdef UNITY_COLORSPACE_GAMMA
surfaceReduction = 1.0-0.28roughnessperceptualRoughness; // 1-0.28x^3 as approximation for (1/(x4+1))(1/2.2) on the domain [0;1]
# else
surfaceReduction = 1.0 / (roughness
roughness + 1.0); // fade \in [0.5;1]
# endif

在这里插入图片描述

  • 当处于线性空间时,可以把光照衰减范围控制在 [0.5,1] 之间

在这里插入图片描述

  • 当处于Gamma空间时

为了节省性能,采用 r 在 [0,1]之间 近似的公式来简化计算:
1-0.28x3 as approximation for (1/(x4+1))(1/2.2) on the domain [0;1]

Unity使用 1-0.28x3 替代 (1/(x4+1))(1/2.2)

在这里插入图片描述

2、GI镜面反射在不同角度下的强弱 :gi.specular * FresnelLerp (specColor, grazingTerm, nv);

  • gi.specular 就是之前文章中解析计算的 GI 的镜面反射

  • Unity中Shader的Standard材质解析(二)

  • 镜面反射在不同角度下的过度 : FresnelLerp (specColor, grazingTerm, nv);

//GI中镜面反射的菲涅尔效果
//F0 : 视线 与 物体法线 夹角为 0° 的情况
//F90 : 视线 与 物体法线 夹角为 90° 的情况
inline half3 FresnelLerp1 (half3 F0, half3 F90, half cosA)
{
half t = Pow5 (1 - cosA); // ala Schlick interpoliation
return lerp (F0, F90, t);
}

  • F0 : 视线 与 物体法线 夹角为 0° 的情况
  • F90 : 视线 与 物体法线 夹角为 90° 的情况
  • NdotV : 视线方向单位向量 dot 法线单位向量 作为反射过度的重要参数

在BRDF中,IBL(Image Based Light)对最终效果有着重要的作用,可以模拟出反射 Cubemap 的效果,可以实现在不同环境中,不需要调节参数只需要修改 Cubemap 就达到模拟物理反射的效果。

BRDF2 和 BRDF3 只是对 BRDF1 性能上的妥协


三、最终效果

在这里插入图片描述

最终代码\

  • .cginc文件
#ifndef MYPHYSICALLYBASERENDERING_INCLUDE
    #define MYPHYSICALLYBASERENDERING_INCLUDE

    //Standard的漫反射和镜面反射计算↓

    //F函数的计算:(菲涅尔效果)
    inline half3 FresnelTerm1 (half3 F0, half cosA)
    {
        half t = Pow5 (1 - cosA);   // ala Schlick interpoliation
        return F0 + (1-F0) * t;
    }
    //GI中镜面反射的菲涅尔效果
    //F0 : 视线 与 物体法线 夹角为 0° 的情况
    //F90 : 视线 与 物体法线 夹角为 90° 的情况
    inline half3 FresnelLerp1 (half3 F0, half3 F90, half cosA)
    {
        half t = Pow5 (1 - cosA);   // ala Schlick interpoliation
        return lerp (F0, F90, t);
    }

    //V函数的计算:
    // Ref: http://jcgt.org/published/0003/02/03/paper.pdf
    inline float SmithJointGGXVisibilityTerm1 (float NdotL, float NdotV, float roughness)
    {
        #if 0
        // Original formulation:
        //  lambda_v    = (-1 + sqrt(a2 * (1 - NdotL2) / NdotL2 + 1)) * 0.5f;
        //  lambda_l    = (-1 + sqrt(a2 * (1 - NdotV2) / NdotV2 + 1)) * 0.5f;
        //  G           = 1 / (1 + lambda_v + lambda_l);

        // Reorder code to be more optimal
        half a          = roughness;
        half a2         = a * a;

        half lambdaV    = NdotL * sqrt((-NdotV * a2 + NdotV) * NdotV + a2);
        half lambdaL    = NdotV * sqrt((-NdotL * a2 + NdotL) * NdotL + a2);

        // Simplify visibility term: (2.0f * NdotL * NdotV) /  ((4.0f * NdotL * NdotV) * (lambda_v + lambda_l + 1e-5f));
        return 0.5f / (lambdaV + lambdaL + 1e-5f);  // This function is not intended to be running on Mobile,
        // therefore epsilon is smaller than can be represented by half
        #else
        //上面公式的一个近似实现(简化平方根,数学上不太精确,但是效果比较接近,性能好)
        // Approximation of the above formulation (simplify the sqrt, not mathematically correct but close enough)
        float a = roughness;
        float lambdaV = NdotL * (NdotV * (1 - a) + a);
        float lambdaL = NdotV * (NdotL * (1 - a) + a);

        #if defined(SHADER_API_SWITCH)
        return 0.5f / (lambdaV + lambdaL + UNITY_HALF_MIN);
        #else
        return 0.5f / (lambdaV + lambdaL + 1e-5f);
        #endif

        #endif
    }
    //D函数的计算:
    inline float GGXTerm1 (float NdotH, float roughness)
    {
        float a2 = roughness * roughness;
        float d = (NdotH * a2 - NdotH) * NdotH + 1.0f; // 2 mad
        return UNITY_INV_PI * a2 / (d * d + 1e-7f); // This function is not intended to be running on Mobile,
        // therefore epsilon is smaller than what can be represented by half
    }

    //为了保证分母不为0,而使用的一种安全的归一化
    inline float3 Unity_SafeNormalize1(float3 inVec)
    {
        //normalize(v) = rsqrt(dot(v,v)) * v;
        float dp3 = max(0.001f, dot(inVec, inVec));
        return inVec * rsqrt(dp3);
    }
    //迪士尼的漫反射计算
    half DisneyDiffuse1(half NdotV, half NdotL, half LdotH, half perceptualRoughness)
    {
        half fd90 = 0.5 + 2 * LdotH * LdotH * perceptualRoughness;
        // Two schlick fresnel term
        half lightScatter   = (1 + (fd90 - 1) * Pow5(1 - NdotL));
        half viewScatter    = (1 + (fd90 - 1) * Pow5(1 - NdotV));

        return lightScatter * viewScatter;
    }
    // Main Physically Based BRDF
    // Derived from Disney work and based on Torrance-Sparrow micro-facet model
    //
    //   BRDF = kD / pi + kS * (D * V * F) / 4
    //   I = BRDF * NdotL
    //
    // * NDF (depending on UNITY_BRDF_GGX):
    //  a) Normalized BlinnPhong
    //  b) GGX
    // * Smith for Visiblity term
    // * Schlick approximation for Fresnel
    half4 BRDF1_Unity_PBS1 (half3 diffColor, half3 specColor, half oneMinusReflectivity, half smoothness,
        float3 normal, float3 viewDir,
        UnityLight light, UnityIndirect gi)
    {
        //感性的粗糙的 = 1 - smoothness
        float perceptualRoughness = SmoothnessToPerceptualRoughness (smoothness);
        //半角向量(一般用 H 表示): H = 光线向量 + 视线向量(此处的 光线向量 和 视线向量 为单位向量,根据向量相加的四边形法则得出半角向量)
        float3 halfDir = Unity_SafeNormalize1 (float3(light.dir) + viewDir);
        
    //法线 与 视线的点积在可见像素上不应该出现负值,但是他有可能发生在 投影 与 法线 映射 时
    //所以,可以通过某些方式来修正,但是会产生额外的指令运算
    //替代方案采用abs的形式,同样可以工作只是正确性少一些    
    // NdotV should not be negative for visible pixels, but it can happen due to perspective projection and normal mapping
    // In this case normal should be modified to become valid (i.e facing camera) and not cause weird artifacts.
    // but this operation adds few ALU and users may not want it. Alternative is to simply take the abs of NdotV (less correct but works too).
    // Following define allow to control this. Set it to 0 if ALU is critical on your platform.
    // This correction is interesting for GGX with SmithJoint visibility function because artifacts are more visible in this case due to highlight edge of rough surface
    // Edit: Disable this code by default for now as it is not compatible with two sided lighting used in SpeedTree.
    #define UNITY_HANDLE_CORRECTLY_NEGATIVE_NDOTV 0

    #if UNITY_HANDLE_CORRECTLY_NEGATIVE_NDOTV
        // The amount we shift the normal toward the view vector is defined by the dot product.
        half shiftAmount = dot(normal, viewDir);
        normal = shiftAmount < 0.0f ? normal + viewDir * (-shiftAmount + 1e-5f) : normal;
        // A re-normalization should be applied here but as the shift is small we don't do it to save ALU.
        //normal = normalize(normal);

        float nv = saturate(dot(normal, viewDir)); // TODO: this saturate should no be necessary here
    #else
        half nv = abs(dot(normal, viewDir));    // This abs allow to limit artifact
    #endif

        //其他向量之间的点积
        float nl = saturate(dot(normal, light.dir));//法线 点积 光线
        float nh = saturate(dot(normal, halfDir));//法线 点积 半角
        half lv = saturate(dot(light.dir, viewDir));//光线 点积 视线
        half lh = saturate(dot(light.dir, halfDir));//光线 点积 半角

        // Diffuse term
        //迪士尼原则的漫反射
        half diffuseTerm = DisneyDiffuse1(nv, nl, lh, perceptualRoughness) * nl;

        // Specular term
        // HACK: theoretically we should divide diffuseTerm by Pi and not multiply specularTerm!
        // 理论上漫反射项中应该除以 PI,但是由于以下两个原因没有这样做
        // BUT 1) that will make shader look significantly darker than Legacy ones
        //原因一:这样会导致最终效果偏暗
        // and 2) on engine side "Non-important" lights have to be divided by Pi too in cases when they are injected into ambient SH
        //原因二:当引擎光照为 不重要光照 时,进行球谐光照计算,会再除以一个 PI。所以,在Unity计算迪士尼漫反射时,不除以PI

        //声明一个学术上的粗糙度 = perceptualRoughness * perceptualRoughness
        float roughness = PerceptualRoughnessToRoughness(perceptualRoughness);

        //GGX模型拥有比较好的效果,默认使用这个模型(并且,UNITY_BRDF_GGX在定义时,默认为 1)
    #if UNITY_BRDF_GGX
        // GGX with roughtness to 0 would mean no specular at all, using max(roughness, 0.002) here to match HDrenderloop roughtness remapping.
        //使用max来限定 roughtness 最小等于0 的原因:当 roughtness 为0时,结果会直接为0,导致效果丢失
        roughness = max(roughness, 0.002);
        float V = SmithJointGGXVisibilityTerm1 (nl, nv, roughness);
        float D = GGXTerm1 (nh, roughness);
    #else
        // Legacy
        half V = SmithBeckmannVisibilityTerm1 (nl, nv, roughness);
        half D = NDFBlinnPhongNormalizedTerm1 (nh, PerceptualRoughnessToSpecPower(perceptualRoughness));
    #endif

        //镜面反射中的DV项的计算
        //最后乘以PI的原因是因为上面计算漫反射时,等式右边没有除以PI。
        //导致算出的结果,等效于分母中多乘了一个PI,所以需要在计算公式时,乘以一个PI,消除PI
        float specularTerm = V*D * UNITY_PI; // Torrance-Sparrow model, Fresnel is applied later

    //如果颜色空间为Gamma空间:    
    #   ifdef UNITY_COLORSPACE_GAMMA
            specularTerm = sqrt(max(1e-4h, specularTerm));
    #   endif

        // specularTerm * nl can be NaN on Metal in some cases, use max() to make sure it's a sane value
        specularTerm = max(0, specularTerm * nl);

    //材质上的镜面高光开关    
    #if defined(_SPECULARHIGHLIGHTS_OFF)
        specularTerm = 0.0;
    #endif

        // surfaceReduction = Int D(NdotH) * NdotH * Id(NdotL>0) dH = 1/(roughness^2+1)
        half surfaceReduction;
    #   ifdef UNITY_COLORSPACE_GAMMA
        //Gamma空间
            surfaceReduction = 1.0-0.28*roughness*perceptualRoughness;      // 1-0.28*x^3 as approximation for (1/(x^4+1))^(1/2.2) on the domain [0;1]
    #   else
        //线性空间
            surfaceReduction = 1.0 / (roughness*roughness + 1.0);           // fade \in [0.5;1]
    #   endif

        // To provide true Lambert lighting, we need to be able to kill specular completely.
        // 当我们的 metallic = 1时,并且Albedo为纯黑色的情况,不希望有金属反射效果
        specularTerm *= any(specColor) ? 1.0 : 0.0;

        half grazingTerm = saturate(smoothness + (1-oneMinusReflectivity));

        //漫反射颜色 = 贴图 * (gi漫反射 + 灯光颜色 * 迪士尼漫反射)
        half3 diffuse = diffColor * (gi.diffuse + light.color * diffuseTerm);
        
        //镜面反射 DFG / 4cos(θl)cos(θv)
        //speclarTerm : D G 函数
        //light.color : 光照颜色
        //FresnelTerm (specColor, lh) : F 函数
        half3 specular = specularTerm * light.color * FresnelTerm1 (specColor, lh);
        
        //IBL(Image Based Lighting)基于图像的光照
        //surfaceReduction : 衰减
        //gi.specular : 间接光中的镜面反射
        //FresnelLerp : 镜面反射在不同角度下的过度
        half3 ibl = surfaceReduction * gi.specular * FresnelLerp1 (specColor, grazingTerm, nv);
        
        half3 color = diffuse + specular + ibl;
        
        return half4(color, 1);
    }

    // Based on Minimalist CookTorrance BRDF
    // Implementation is slightly different from original derivation: http://www.thetenthplanet.de/archives/255
    //
    // * NDF (depending on UNITY_BRDF_GGX):
    //  a) BlinnPhong
    //  b) [Modified] GGX
    // * Modified Kelemen and Szirmay-​Kalos for Visibility term
    // * Fresnel approximated with 1/LdotH
    half4 BRDF2_Unity_PBS1 (half3 diffColor, half3 specColor, half oneMinusReflectivity, half smoothness,
        float3 normal, float3 viewDir,
        UnityLight light, UnityIndirect gi)
    {
        float3 halfDir = Unity_SafeNormalize (float3(light.dir) + viewDir);

        half nl = saturate(dot(normal, light.dir));
        float nh = saturate(dot(normal, halfDir));
        half nv = saturate(dot(normal, viewDir));
        float lh = saturate(dot(light.dir, halfDir));

        // Specular term
        half perceptualRoughness = SmoothnessToPerceptualRoughness (smoothness);
        half roughness = PerceptualRoughnessToRoughness(perceptualRoughness);

    #if UNITY_BRDF_GGX

        // GGX Distribution multiplied by combined approximation of Visibility and Fresnel
        // See "Optimizing PBR for Mobile" from Siggraph 2015 moving mobile graphics course
        // https://community.arm.com/events/1155
        float a = roughness;
        float a2 = a*a;

        float d = nh * nh * (a2 - 1.f) + 1.00001f;
    #ifdef UNITY_COLORSPACE_GAMMA
        // Tighter approximation for Gamma only rendering mode!
        // DVF = sqrt(DVF);
        // DVF = (a * sqrt(.25)) / (max(sqrt(0.1), lh)*sqrt(roughness + .5) * d);
        float specularTerm = a / (max(0.32f, lh) * (1.5f + roughness) * d);
    #else
        float specularTerm = a2 / (max(0.1f, lh*lh) * (roughness + 0.5f) * (d * d) * 4);
    #endif

        // on mobiles (where half actually means something) denominator have risk of overflow
        // clamp below was added specifically to "fix" that, but dx compiler (we convert bytecode to metal/gles)
        // sees that specularTerm have only non-negative terms, so it skips max(0,..) in clamp (leaving only min(100,...))
    #if defined (SHADER_API_MOBILE)
        specularTerm = specularTerm - 1e-4f;
    #endif

    #else

        // Legacy
        half specularPower = PerceptualRoughnessToSpecPower(perceptualRoughness);
        // Modified with approximate Visibility function that takes roughness into account
        // Original ((n+1)*N.H^n) / (8*Pi * L.H^3) didn't take into account roughness
        // and produced extremely bright specular at grazing angles

        half invV = lh * lh * smoothness + perceptualRoughness * perceptualRoughness; // approx ModifiedKelemenVisibilityTerm(lh, perceptualRoughness);
        half invF = lh;

        half specularTerm = ((specularPower + 1) * pow (nh, specularPower)) / (8 * invV * invF + 1e-4h);

    #ifdef UNITY_COLORSPACE_GAMMA
        specularTerm = sqrt(max(1e-4f, specularTerm));
    #endif

    #endif

    #if defined (SHADER_API_MOBILE)
        specularTerm = clamp(specularTerm, 0.0, 100.0); // Prevent FP16 overflow on mobiles
    #endif
    #if defined(_SPECULARHIGHLIGHTS_OFF)
        specularTerm = 0.0;
    #endif

        // surfaceReduction = Int D(NdotH) * NdotH * Id(NdotL>0) dH = 1/(realRoughness^2+1)

        // 1-0.28*x^3 as approximation for (1/(x^4+1))^(1/2.2) on the domain [0;1]
        // 1-x^3*(0.6-0.08*x)   approximation for 1/(x^4+1)
    #ifdef UNITY_COLORSPACE_GAMMA
        half surfaceReduction = 0.28;
    #else
        half surfaceReduction = (0.6-0.08*perceptualRoughness);
    #endif

        surfaceReduction = 1.0 - roughness*perceptualRoughness*surfaceReduction;

        half grazingTerm = saturate(smoothness + (1-oneMinusReflectivity));
        half3 color =   (diffColor + specularTerm * specColor) * light.color * nl
                        + gi.diffuse * diffColor
                        + surfaceReduction * gi.specular * FresnelLerpFast (specColor, grazingTerm, nv);

        return half4(color, 1);
    }

    sampler2D_float unity_NHxRoughness1;
    half3 BRDF3_Direct1(half3 diffColor, half3 specColor, half rlPow4, half smoothness)
    {
        half LUT_RANGE = 16.0; // must match range in NHxRoughness() function in GeneratedTextures.cpp
        // Lookup texture to save instructions
        half specular = tex2D(unity_NHxRoughness1, half2(rlPow4, SmoothnessToPerceptualRoughness(smoothness))).r * LUT_RANGE;
    #if defined(_SPECULARHIGHLIGHTS_OFF)
        specular = 0.0;
    #endif

        return diffColor + specular * specColor;
    }

    half3 BRDF3_Indirect1(half3 diffColor, half3 specColor, UnityIndirect indirect, half grazingTerm, half fresnelTerm)
    {
        half3 c = indirect.diffuse * diffColor;
        c += indirect.specular * lerp (specColor, grazingTerm, fresnelTerm);
        return c;
    }

    // Old school, not microfacet based Modified Normalized Blinn-Phong BRDF
    // Implementation uses Lookup texture for performance
    //
    // * Normalized BlinnPhong in RDF form
    // * Implicit Visibility term
    // * No Fresnel term
    //
    // TODO: specular is too weak in Linear rendering mode
    half4 BRDF3_Unity_PBS1 (half3 diffColor, half3 specColor, half oneMinusReflectivity, half smoothness,
        float3 normal, float3 viewDir,
        UnityLight light, UnityIndirect gi)
    {
        float3 reflDir = reflect (viewDir, normal);

        half nl = saturate(dot(normal, light.dir));
        half nv = saturate(dot(normal, viewDir));

        // Vectorize Pow4 to save instructions
        half2 rlPow4AndFresnelTerm = Pow4 (float2(dot(reflDir, light.dir), 1-nv));  // use R.L instead of N.H to save couple of instructions
        half rlPow4 = rlPow4AndFresnelTerm.x; // power exponent must match kHorizontalWarpExp in NHxRoughness() function in GeneratedTextures.cpp
        half fresnelTerm = rlPow4AndFresnelTerm.y;

        half grazingTerm = saturate(smoothness + (1-oneMinusReflectivity));

        
        half3 color = BRDF3_Direct1(diffColor, specColor, rlPow4, smoothness);
        color *= light.color * nl;
        color += BRDF3_Indirect1(diffColor, specColor, gi, grazingTerm, fresnelTerm);

        
        return half4(color, 1);
    }



    // Default BRDF to use:
    //在 ProjectSetting->Graphics->TierSetting中设置
    //StandardShaderQuality = low(UNITY_PBS_USE_BRDF3)
    //StandardShaderQuality = Medium(UNITY_PBS_USE_BRDF2)
    //StandardShaderQuality = High(UNITY_PBS_USE_BRDF1)

    #if !defined (UNITY_BRDF_PBS1) // allow to explicitly override BRDF in custom shader
    // still add safe net for low shader models, otherwise we might end up with shaders failing to compile
    #if SHADER_TARGET < 30 || defined(SHADER_TARGET_SURFACE_ANALYSIS) // only need "something" for surface shader analysis pass; pick the cheap one
        #define UNITY_BRDF_PBS1 BRDF3_Unity_PBS1  //效果最差的BRDF
    #elif defined(UNITY_PBS_USE_BRDF3)
        #define UNITY_BRDF_PBS1 BRDF3_Unity_PBS1
    #elif defined(UNITY_PBS_USE_BRDF2)
        #define UNITY_BRDF_PBS1 BRDF2_Unity_PBS1
    #elif defined(UNITY_PBS_USE_BRDF1)
        #define UNITY_BRDF_PBS1 BRDF1_Unity_PBS1
    #else
        #error something broke in auto-choosing BRDF
    #endif
    #endif

    inline half OneMinusReflectivityFromMetallic1(half metallic)
    {
        // We'll need oneMinusReflectivity, so
        //   1-reflectivity = 1-lerp(dielectricSpec, 1, metallic) = lerp(1-dielectricSpec, 0, metallic)
        // store (1-dielectricSpec) in unity_ColorSpaceDielectricSpec.a, then
        //   1-reflectivity = lerp(alpha, 0, metallic) = alpha + metallic*(0 - alpha) =
        //                  = alpha - metallic * alpha
        half oneMinusDielectricSpec = unity_ColorSpaceDielectricSpec.a;
        return oneMinusDielectricSpec - metallic * oneMinusDielectricSpec;
    }

    inline half3 DiffuseAndSpecularFromMetallic1 (half3 albedo, half metallic, out half3 specColor, out half oneMinusReflectivity)
    {
        //计算镜面高光颜色
        //当metallic为0(即非金属时),返回unity_ColorSpaceDielectricSpec.rgb(0.04)
        //unity_ColorSpaceDielectricSpec.rgb表示的是绝缘体的通用反射颜色
        //迪士尼经大量测量用 0.04 来表示
        //当 metallic = 1 时(金属),返回Albedo,也就是物体本身的颜色
        specColor = lerp (unity_ColorSpaceDielectricSpec.rgb, albedo, metallic);
        oneMinusReflectivity = OneMinusReflectivityFromMetallic1(metallic);
        return albedo * oneMinusReflectivity;
    }

    //s : 物体表面数据信息
    //viewDir : 视线方向
    //gi : 全局光照(GI漫反射 和 GI镜面反射)
    inline half4 LightingStandard1 (SurfaceOutputStandard s, float3 viewDir, UnityGI gi)
    {
        s.Normal = normalize(s.Normal);

        half oneMinusReflectivity;
        //镜面高光颜色
        half3 specColor;
        s.Albedo = DiffuseAndSpecularFromMetallic1 (s.Albedo, s.Metallic, /*out*/ specColor, /*out*/ oneMinusReflectivity);

        // shader relies on pre-multiply alpha-blend (_SrcBlend = One, _DstBlend = OneMinusSrcAlpha)
        // this is necessary to handle transparency in physically correct way - only diffuse component gets affected by alpha
        //当开启半透明模式时,对 Alpha 进行相关计算
        half outputAlpha;
        s.Albedo = PreMultiplyAlpha (s.Albedo, s.Alpha, oneMinusReflectivity, /*out*/ outputAlpha);

        //具体的BRDF计算
        //s.Albedo : 物体表面的基础颜色
        //specColor : 镜面反射颜色
        //oneMinusReflectivity : 漫反射率 = 1 - 镜面反射率
        //s.Smoothness : 物体表面的光滑度
        //s.Normal : 物体表面的法线
        //viewDir : 视线方向
        //gi.light : 直接光信息
        //gi.indirect : GI间接光信息
        half4 c = UNITY_BRDF_PBS1 (s.Albedo, specColor, oneMinusReflectivity, s.Smoothness, s.Normal, viewDir, gi.light, gi.indirect);
        c.a = outputAlpha;
        return c;
    }


    //Standard的GI计算↓
    half3 Unity_GlossyEnvironment1 (UNITY_ARGS_TEXCUBE(tex), half4 hdr, Unity_GlossyEnvironmentData glossIn)
    {
        half perceptualRoughness = glossIn.roughness /* perceptualRoughness */ ;

        // TODO: CAUTION: remap from Morten may work only with offline convolution, see impact with runtime convolution!
        // For now disabled
        #if 0
        float m = PerceptualRoughnessToRoughness(perceptualRoughness); // m is the real roughness parameter
        const float fEps = 1.192092896e-07F;        // smallest such that 1.0+FLT_EPSILON != 1.0  (+1e-4h is NOT good here. is visibly very wrong)
        float n =  (2.0/max(fEps, m*m))-2.0;        // remap to spec power. See eq. 21 in --> https://dl.dropboxusercontent.com/u/55891920/papers/mm_brdf.pdf

        n /= 4;                                     // remap from n_dot_h formulatino to n_dot_r. See section "Pre-convolved Cube Maps vs Path Tracers" --> https://s3.amazonaws.com/docs.knaldtech.com/knald/1.0.0/lys_power_drops.html

        perceptualRoughness = pow( 2/(n+2), 0.25);      // remap back to square root of real roughness (0.25 include both the sqrt root of the conversion and sqrt for going from roughness to perceptualRoughness)
        #else
        // MM: came up with a surprisingly close approximation to what the #if 0'ed out code above does.
        //r = r * (1.7 - 0.7*r)
        //由于粗糙度与反射探针的mip变化不呈现线性正比,所以需要一个公式来改变
        perceptualRoughness = perceptualRoughness*(1.7 - 0.7*perceptualRoughness);
        #endif

        //UNITY_SPECCUBE_LOD_STEPS = 6,表示反射探针的mip级别有 6 档。粗糙度X6得到最终得mip级别
        half mip = perceptualRoughnessToMipmapLevel(perceptualRoughness);
        half3 R = glossIn.reflUVW;
        half4 rgbm = UNITY_SAMPLE_TEXCUBE_LOD(tex, R, mip);

        return DecodeHDR(rgbm, hdr);
    }



    //GI中的镜面反射
    inline half3 UnityGI_IndirectSpecular1(UnityGIInput data, half occlusion, Unity_GlossyEnvironmentData glossIn)
    {
        half3 specular;
        //如果开启了反射探针的Box Projection
        #ifdef UNITY_SPECCUBE_BOX_PROJECTION
        // we will tweak reflUVW in glossIn directly (as we pass it to Unity_GlossyEnvironment twice for probe0 and probe1), so keep original to pass into BoxProjectedCubemapDirection
        half3 originalReflUVW = glossIn.reflUVW;
        glossIn.reflUVW = BoxProjectedCubemapDirection (originalReflUVW, data.worldPos, data.probePosition[0], data.boxMin[0], data.boxMax[0]);
        #endif

        #ifdef _GLOSSYREFLECTIONS_OFF
        specular = unity_IndirectSpecColor.rgb;
        #else
        half3 env0 = Unity_GlossyEnvironment1 (UNITY_PASS_TEXCUBE(unity_SpecCube0), data.probeHDR[0], glossIn);
        //如果开启了反射探针混合
        #ifdef UNITY_SPECCUBE_BLENDING
        const float kBlendFactor = 0.99999;
        float blendLerp = data.boxMin[0].w;
        UNITY_BRANCH
        if (blendLerp < kBlendFactor)
        {
            #ifdef UNITY_SPECCUBE_BOX_PROJECTION
            glossIn.reflUVW = BoxProjectedCubemapDirection (originalReflUVW, data.worldPos, data.probePosition[1], data.boxMin[1], data.boxMax[1]);
            #endif

            half3 env1 = Unity_GlossyEnvironment (UNITY_PASS_TEXCUBE_SAMPLER(unity_SpecCube1,unity_SpecCube0), data.probeHDR[1], glossIn);
            specular = lerp(env1, env0, blendLerp);
        }
        else
        {
            specular = env0;
        }
        #else
        specular = env0;
        #endif
        #endif

        return specular * occlusion;
    }


    inline UnityGI UnityGlobalIllumination1 (UnityGIInput data, half occlusion, half3 normalWorld)
    {
        return UnityGI_Base(data, occlusion, normalWorld);
    }
    //GI计算
    inline UnityGI UnityGlobalIllumination1 (UnityGIInput data, half occlusion, half3 normalWorld, Unity_GlossyEnvironmentData glossIn)
    {
        //计算得出GI中的漫反射
        UnityGI o_gi = UnityGI_Base(data, occlusion, normalWorld);
        //计算得出GI中的镜面反射
        o_gi.indirect.specular = UnityGI_IndirectSpecular1(data, occlusion, glossIn);
        return o_gi;
    }
    float SmoothnessToPerceptualRoughness1(float smoothness)
    {
        return (1 - smoothness);
    }
    Unity_GlossyEnvironmentData UnityGlossyEnvironmentSetup1(half Smoothness, half3 worldViewDir, half3 Normal, half3 fresnel0)
    {
        Unity_GlossyEnvironmentData g;
        //粗糙度
        g.roughness /* perceptualRoughness */   = SmoothnessToPerceptualRoughness1(Smoothness);
        //反射球的采样坐标
        g.reflUVW   = reflect(-worldViewDir, Normal);

        return g;
    }

    //PBR光照模型的GI计算
    inline void LightingStandard_GI1(
        SurfaceOutputStandard s,
        UnityGIInput data,
        inout UnityGI gi)
    {
        //如果是延迟渲染PASS并且开启了延迟渲染反射探针的话
        #if defined(UNITY_PASS_DEFERRED) && UNITY_ENABLE_REFLECTION_BUFFERS
        gi = UnityGlobalIllumination1(data, s.Occlusion, s.Normal);
        #else

        //Unity_GlossyEnvironmentData表示GI中的反射准备数据
        Unity_GlossyEnvironmentData g = UnityGlossyEnvironmentSetup1(s.Smoothness, data.worldViewDir, s.Normal,
                                                                    lerp(unity_ColorSpaceDielectricSpec.rgb, s.Albedo,
                                                                         s.Metallic));
        //进行GI计算并返回输出gi
        gi = UnityGlobalIllumination1(data, s.Occlusion, s.Normal, g);
        #endif
    }


#endif

  • Shader文件
//Standard材质
Shader "MyShader/P2_2_9"
{
    Properties
    {
        _Color ("Color", Color) = (1,1,1,1)
        _MainTex ("Albedo (RGB)", 2D) = "white" {}
        [NoScaleOffset]_MetallicTex("Metallic(R) Smoothness(G) AO(B)",2D) = "white" {}
        [NoScaleOffset][Normal]_NormalTex("NormalTex",2D) = "bump" {}
        
        _Glossiness ("Smoothness", Range(0,1)) = 0.0
        _Metallic ("Metallic", Range(0,1)) = 0.0
        _AO("AO",Range(0,1)) = 1.0
    }
    SubShader
    {
        Tags
        {
            "RenderType"="Opaque"
        }
        LOD 200

        // ---- forward rendering base pass:
        Pass
        {
            Name "FORWARD"
            Tags
            {
                "LightMode" = "ForwardBase"
            }

            CGPROGRAM
            // compile directives
            #pragma vertex vert
            #pragma fragment frag
            #pragma target 3.0
            #pragma multi_compile_instancing
            #pragma multi_compile_fog
            #pragma multi_compile_fwdbase

            #include "UnityCG.cginc"
            #include "Lighting.cginc"
            #include "UnityPBSLighting.cginc"
            #include "AutoLight.cginc"
            #include "CGInclude/MyPhysicallyBasedRendering.cginc"
                
            sampler2D _MainTex;
            float4 _MainTex_ST;
            half _Glossiness;
            half _Metallic;
            fixed4 _Color;
            sampler2D _MetallicTex;
            half _AO;
            sampler2D _NormalTex;
            
            struct appdata
            {
                float4 vertex : POSITION;
                float4 tangent : TANGENT;
                float3 normal : NORMAL;
                float4 texcoord : TEXCOORD0;
                float4 texcoord1 : TEXCOORD1;
                float4 texcoord2 : TEXCOORD2;
                float4 texcoord3 : TEXCOORD3;
                fixed4 color : COLOR;
                UNITY_VERTEX_INPUT_INSTANCE_ID
            };

            // vertex-to-fragment interpolation data
            // no lightmaps:
            struct v2f
            {
                float4 pos : SV_POSITION;
                float2 uv : TEXCOORD0; // _MainTex
                float3 worldNormal : TEXCOORD1;
                float3 worldPos : TEXCOORD2;
                #if UNITY_SHOULD_SAMPLE_SH
                    half3 sh : TEXCOORD3; // SH
                #endif
                //切线空间需要使用的矩阵
                float3 tSpace0 : TEXCOORD4;
                float3 tSpace1 : TEXCOORD5;
                float3 tSpace2 : TEXCOORD6;

                UNITY_FOG_COORDS(7)
                UNITY_SHADOW_COORDS(8)
            };

            // vertex shader
            v2f vert(appdata v)
            {
                v2f o;

                o.pos = UnityObjectToClipPos(v.vertex);
                o.uv.xy = TRANSFORM_TEX(v.texcoord, _MainTex);
                float3 worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;
                float3 worldNormal = UnityObjectToWorldNormal(v.normal);

                //世界空间下的切线
                half3 worldTangent = UnityObjectToWorldDir(v.tangent);
                //切线方向
                half tangentSign = v.tangent.w * unity_WorldTransformParams.w;
                //世界空间下的副切线
                half3 worldBinormal = cross(worldNormal, worldTangent) * tangentSign;
                //切线矩阵
                o.tSpace0 = float3(worldTangent.x, worldBinormal.x, worldNormal.x);
                o.tSpace1 = float3(worldTangent.y, worldBinormal.y, worldNormal.y);
                o.tSpace2 = float3(worldTangent.z, worldBinormal.z, worldNormal.z);

                o.worldPos.xyz = worldPos;
                o.worldNormal = worldNormal;

                // SH/ambient and vertex lights

                #if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXEL
                    o.sh = 0;
                    // Approximated illumination from non-important point lights
                #ifdef VERTEXLIGHT_ON
                    o.sh += Shade4PointLights (
                    unity_4LightPosX0, unity_4LightPosY0, unity_4LightPosZ0,
                    unity_LightColor[0].rgb, unity_LightColor[1].rgb, unity_LightColor[2].rgb, unity_LightColor[3].rgb,
                    unity_4LightAtten0, worldPos, worldNormal);
                #endif
                    o.sh = ShadeSHPerVertex (worldNormal, o.sh);
                #endif


                UNITY_TRANSFER_LIGHTING(o, v.texcoord1.xy);

                UNITY_TRANSFER_FOG(o, o.pos); // pass fog coordinates to pixel shader

                return o;
            }

            // fragment shader
            fixed4 frag(v2f i) : SV_Target
            {
                UNITY_EXTRACT_FOG(i);
                
                float3 worldPos = i.worldPos.xyz;
                
                float3 worldViewDir = normalize(UnityWorldSpaceViewDir(worldPos));

                SurfaceOutputStandard o;
                UNITY_INITIALIZE_OUTPUT(SurfaceOutputStandard, o);

                fixed4 mainTex = tex2D(_MainTex, i.uv);
                o.Albedo = mainTex.rgb * _Color;

                o.Emission = 0.0;

                fixed4 metallicTex = tex2D(_MetallicTex, i.uv);
                o.Metallic = metallicTex.r * _Metallic;
                o.Smoothness = metallicTex.g * _Glossiness;
                o.Occlusion = metallicTex.b * _AO;
                o.Alpha = 1;


                half3 normalTex = UnpackNormal(tex2D(_NormalTex,i.uv));
                half3 worldNormal = half3(dot(i.tSpace0,normalTex),dot(i.tSpace1,normalTex),dot(i.tSpace2,normalTex));
                o.Normal = worldNormal;


                // compute lighting & shadowing factor
                UNITY_LIGHT_ATTENUATION(atten, i, worldPos)

                // Setup lighting environment
                UnityGI gi;
                UNITY_INITIALIZE_OUTPUT(UnityGI, gi);
                gi.indirect.diffuse = 0;
                gi.indirect.specular = 0;
                gi.light.color = _LightColor0.rgb;
                gi.light.dir = _WorldSpaceLightPos0.xyz;
                // Call GI (lightmaps/SH/reflections) lighting function
                UnityGIInput giInput;
                UNITY_INITIALIZE_OUTPUT(UnityGIInput, giInput);
                giInput.light = gi.light;
                giInput.worldPos = worldPos;
                giInput.worldViewDir = worldViewDir;
                giInput.atten = atten;
                #if defined(LIGHTMAP_ON) || defined(DYNAMICLIGHTMAP_ON)
                    giInput.lightmapUV = IN.lmap;
                #else
                giInput.lightmapUV = 0.0;
                #endif
                #if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXEL
                    giInput.ambient = i.sh;
                #else
                giInput.ambient.rgb = 0.0;
                #endif
                giInput.probeHDR[0] = unity_SpecCube0_HDR;
                giInput.probeHDR[1] = unity_SpecCube1_HDR;
                #if defined(UNITY_SPECCUBE_BLENDING) || defined(UNITY_SPECCUBE_BOX_PROJECTION)
                    giInput.boxMin[0] = unity_SpecCube0_BoxMin; // .w holds lerp value for blending
                #endif
                #ifdef UNITY_SPECCUBE_BOX_PROJECTION
                    giInput.boxMax[0] = unity_SpecCube0_BoxMax;
                    giInput.probePosition[0] = unity_SpecCube0_ProbePosition;
                    giInput.boxMax[1] = unity_SpecCube1_BoxMax;
                    giInput.boxMin[1] = unity_SpecCube1_BoxMin;
                    giInput.probePosition[1] = unity_SpecCube1_ProbePosition;
                #endif
                
                LightingStandard_GI1(o, giInput, gi);
                
                //return fixed4(gi.indirect.specular,1);
                
                // PBS的核心计算
                fixed4 c = LightingStandard1(o, worldViewDir, gi);
                
                UNITY_APPLY_FOG(_unity_fogCoord, c); // apply fog
                UNITY_OPAQUE_ALPHA(c.a); //把c的Alpha置1
                
                return c;
            }
            ENDCG

        }
    }

}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1264529.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Shell编程基础 – for循环

Shell编程基础 – for循环 Shell Scripting Essentials - for Loop 大多数编程语言都有循环的概念和语句。如果想重复一个任务数十次&#xff0c;无论是输入数十次&#xff0c;还是输出数十次&#xff0c;对用户来说都不现实。 因此&#xff0c;我们考虑如何用好Bash Shell编…

一个人撸码!之vue3+vite+element-plus后台管理(标签页组件)

一个后台管理常常需要一个标签页来管理已经打开的页面&#xff0c;这里我们单独写一个组件来展示标签页数组。 该标签页组件只做展示不涉及操作数据。标签页数组可记录已打开的数组&#xff0c;还能定义什么页面需要缓存&#xff0c;是一个重要的功能呢。 首先&#xff0c;建立…

【华为OD题库-043】二维伞的雨滴效应-java

题目 普通的伞在二维平面世界中&#xff0c;左右两侧均有一条边&#xff0c;而两侧伞边最下面各有一个伞坠子&#xff0c;雨滴落到伞面&#xff0c;逐步流到伞坠处&#xff0c;会将伞坠的信息携带并落到地面&#xff0c;随着日积月累&#xff0c;地面会呈现伞坠的信息。 1、为了…

FlowJo 10 v10.4(流式细胞分析软件)

FlowJo是一款广泛应用的流式细胞数据分析软件&#xff0c;它功能强大&#xff0c;简单易用&#xff0c;是流式领域最受推荐的一款专业分析软件&#xff0c;也是各高影响力科学期刊使用最多的软件&#xff0c;已经成了行业的一个标准。 FlowJo具有全面专业的分析功能&#xff0…

解析直播第三方美颜SDK:技术原理与应用

时下&#xff0c;直播平台和主播们纷纷引入美颜技术&#xff0c;以提升视觉效果和用户体验。而在众多美颜技术中&#xff0c;直播第三方美颜SDK成为许多开发者和平台的首选&#xff0c;因其灵活性和高效性而备受推崇。 一、技术原理&#xff1a;美颜算法的精髓 第三方美颜SDK…

Keil5 debug

目录 debug调试功能 基本功能&#xff1a; 程序复位&#xff1a;Reset 运行&#xff1a;Run 停止&#xff1a;Stop 断点调试&#xff08;Breakpoint Debugging&#xff09; 单步调试&#xff1a; 单步调试:Step 单步跳过调试&#xff1a;Step Over&#xff1a; 单步返…

不同路径 II(力扣LeetCode)动态规划

不同路径 II 题目描述 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish”&#xff09;。 现在考虑网格中有障碍物。…

Centos7安装配置nginx

快捷查看指令 ctrlf 进行搜索会直接定位到需要的知识点和命令讲解&#xff08;如有不正确的地方欢迎各位小伙伴在评论区提意见&#xff0c;小编会及时修改&#xff09; Centos7安装配置nginx Nginx介绍 Nginx (engine x) 是一个高性能的 HTTP 和 反向代理 服务&#xff0c;也…

运营商网络性能测试-Y.1564

前言 在网络部署之后和业务开展之前&#xff0c;运营商迫切希望了解当前网络的性能状态&#xff0c;以便为商业规划和业务推广提供必要的基础数据支持。因此&#xff0c;高可靠性和高精确度的性能测试方法对于运营商评判网络性能的优劣&#xff0c;显得尤为重要&#xff0c;而…

InnoSetupCompiler打包程序

修改默认的安装路径 因为程序可能需要在安装路径中写日志&#xff0c;默认的安装路径C:\Program Files (x86)&#xff0c;这个路径好像是受保护还是啥&#xff0c;如果使用默认的打开会报错。 修改方法&#xff1a; DefaultDirName{autopf}\{#MyAppName} {autopf}改成…

【安卓】安卓xTS之Media模块 学习笔记(1) xTS介绍

1.背景 Media的安卓xTS相关测试和功能修复已经进行了一段时间了。 在此整理总结下xTS工作总结&#xff0c;留待后续查阅整理。 2. xTS介绍 - 什么是xTS 谷歌的xTS是对谷歌发布的CTS/GTS/VTS/STS/BTS/CTS-on-GSI等一系列测试的统称。 因为安卓系统比较庞大&#xff0c;模块多…

.mat格式文件是什么?及将png,jpg,bmp,gif,tiff,psd等格式图片转为.mat格式(附代码)

很多深度学习网络的输入要求为.mat格式&#xff0c;当然也可以直接修改输入数据的代码&#xff0c;比如修改为使用OpenCV读取图片等&#xff0c;但有些网络修改起来比较麻烦&#xff0c;且.mat数据有很多优势&#xff0c;所以部分网络最好还是用默认的.mat格式数据 目录 一、.…

jekins CVE-2018-1000861 漏洞复现

jekins CVE-2018-1000861 漏洞复现 ‍ 名称: jenkins 命令执行 &#xff08;CVE-2018-1000861&#xff09; 描述: ​Jenkins 可以通过其网页界面轻松设置和配置,其中包括即时错误检查和内置帮助。 插件 通过更新中心中的 1000 多个插件,Jenkins 集成了持续集成和持续交付工具…

PTA-6-48 使用面向对象的思想编写程序描述动物

题目&#xff1a; 使用面向对象的思想编写程序描述动物&#xff0c;说明&#xff1a; &#xff08;1) 分析兔子和青蛙的共性&#xff0c;定义抽象的动物类&#xff0c;拥有一些动物共有的属性&#xff1a;名字、颜色、类别&#xff08;哺乳类、非哺乳类&#xff09;&#xff0c…

三十、elasticsearch集群

目录 一、集群的概念 1、节点 2、索引 3、分片和副本 二、集群的架构 三、集群的部署方式 1、单主节点 2、多主节点 3、安全集群 四、搭建ES集群 1、elasticsearch中集群节点有不同的职责划分 2、elasticsearch中的每个节点角色都有自己不同的职责&#xff0c;因此…

中间件安全:JBoss 反序列化命令执行漏洞.(CVE-2017-12149)

中间件安全&#xff1a;JBoss 反序列化命令执行漏洞.&#xff08;CVE-2017-12149&#xff09; JBoss 反序列化漏洞&#xff0c;该漏洞位于 JBoss 的 HttpInvoker 组件中的 ReadOnlyAccessFilter 过滤器中&#xff0c;其 doFilter 方法在没有进行任何安全检查和限制的情况下尝试…

基于ssm的编程技术类博客系统的设计与实现

基于SSM的编程技术类博客系统的设计与实现 摘要&#xff1a;博客是是互联网信息产生的主要来源之一。博客将信息采集与发布最大程度的简单化与快捷化&#xff0c;对个人能力提升也具有极大的帮助。一方面&#xff0c;极大地丰富了网络信息的资源&#xff0c;在时效性、连续流动…

美团2023年Q3财报:营收765亿元 即时零售订单量增至62亿笔

11月28日&#xff0c;美团(股票代码:3690.HK)发布2023年第三季度业绩&#xff0c;公司当季收入765亿元(人民币&#xff0c;下同)&#xff0c;较去年同比增长22.1%。基于提质增效的经营策略&#xff0c;主体业务表现稳固健康&#xff0c;带动公司整体经调整净利润为57.3亿元。 …

Mysql更新Blob存储的Josn数据

Mysql更新blob存储的Josn数据 记录一次mysql操作blob格式存储的json字符串数据 1、检查版本 -- 版本5.7以上才可以能执行json操作 select version(); 2、创建测试数据 -- 创建测试表及测试数据 CREATE TABLE test_json_table AS SELECT UUID(), {"test1": {"…