STL: 容器适配器stack 与 queue

news2024/11/27 12:31:06

 目录

1.容器适配器

1.1 STL标准库中stack和queue的底层结构

1.2 deque的简单介绍(了解)

1.2.1 deque的原理介绍

1.2.2 deque的缺陷

1.2.3 为什么选择deque作为stack和queue的底层默认容器

2. stack的介绍和使用

2.1 stack的介绍

 2.2 stack的使用

2.3 利用deque模拟实现stack

3.queue的介绍和使用

3.1 queue的介绍

 3.2 queue的使用

3.3 利用deque模拟实现stack 

4.priority_queue的介绍及使用

4.1 priority_queue的介绍

4.2 priority_queue的使用

3.3 priority_queue的模拟实现


1.容器适配器

什么是适配器:

适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口

1.1 STL标准库中stack和queue的底层结构

虽然stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为容器适配器,这是因为stack和队列queue只是对其他容器的接口进行了包装,STL中stack和queue默认使用deque,比如:

1.2 deque的简单介绍(了解)

1.2.1 deque的原理介绍

deque文档介绍 

deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。

deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组,其底层结构如下图所示:

1.2.2 deque的缺陷

与vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,因此其效率是比vector高的。

与list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段。

但是,deque有一个致命缺陷:不适合遍历,不能随机访问,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构

1.2.3 为什么选择deque作为stack和queue的底层默认容器

stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可以作为stack的底层容器,比如vector和list都可以;queue是先进先出的特殊线性数据结构,只要具有push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如list。

但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:

1. stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进行操作。

2. 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长时,deque不仅效率高,而且内存使用率高。

结合了deque的优点,而完美的避开了其缺陷。

2. stack的介绍和使用

2.1 stack的介绍

stack的文档介绍

翻译:

  1. stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除只能从容器的一端进行元素的插入与提取操作。
  2. stack是作为容器适配器被实现的,容器适配器即是对特定类封装作为其底层的容器,并提供一组特定的成员函数来访问其元素,将特定类作为其底层的,元素特定容器的尾部(即栈顶)被压入和弹出。我们后面会详细讲解容器适配器。
  3. stack的底层容器可以是任何标准的容器类模板或者一些其他特定的容器类,这些容器类应该支持以下操作:

    empty:判空操作

    back:获取尾部元素操作

    push_back:尾部插入元素操作

    pop_back:尾部删除元素操作

    标准容器vector、deque、list均符合这些需求,默认情况下,如果没有为stack指定特定的底层容器,默认情况下使用deque

 2.2 stack的使用

函数说明接口说明
stack()构造空的栈
empty()检测stack是否为空
size()返回stack中元素的个数
top()返回栈顶元素的引用
push()将元素val压入stack中
pop()将stack中尾部的元素弹出
void test1()
{
	wdz::stack<int> s1;
	s1.push(1);
	s1.push(2);
	s1.push(3);
	while (!s1.empty())
	{
		cout << s1.top() << " ";
		s1.pop();
	}
	cout << endl;
} 

2.3 利用deque模拟实现stack

 模拟代码:

#include<deque>
using namespace std;
namespace xlh
{
    template<class T, class Con = deque<T>>
    class stack
    {
    public:

        void push(const T& x)
        {
            _c.push_back(x);
        }

        void pop()
        {
            _c.pop_back();
        }

        T& top()
        {
            return _c.back();
        }

        const T& top()const
        {
            return _c.back();
        }

        size_t size()const
        {
            return _c.size();
        }

        bool empty()const
        {
            return _c.empty();
        }

    private:
        Con _c;

    };
}

3.queue的介绍和使用

3.1 queue的介绍

queue的文档介绍

翻译:

  1. 队列是一种容器适配器,专门用于在FIFO上下文(先进先出)中操作,其中从容器一端插入元素,另一端提取元素。
  2. 队列作为容器适配器实现,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从队尾入队列,从队头出队列。
  3. 底层容器可以是标准容器类模板之一,也可以是其他专门设计的容器类。该底层容器应至少支持以下操作:

    empty:检测队列是否为空

    size:返回队列中有效元素的个数

    front:返回队头元素的引用

    back:返回队尾元素的引用

    push_back:在队列尾部入队列

    pop_front:在队列头部出队列

    标准容器类deque和list满足了这些要求。默认情况下,如果没有为queue实例化指定容器类,则使用标准容器deque。

 3.2 queue的使用

函数声明接口说明
queue()构造空的队列
empty()检测队列是否为空,是返回true,否则返回false
size()返回队列中有效元素的个数
front()返回队头元素的引用
back()返回队尾元素的引用
push()在队尾将元素val入队列
pop()将队头元素出队列

3.3 利用deque模拟实现stack 

模拟代码:

#include<deque>
using namespace std;
namespace xlh
{
    template<class T, class Con = deque<T>>
    class queue
    {
    public:

        void push(const T& x)
        {
            _c.push_back(x);
        }

        void pop()
        {
            _c.pop_front();
        }

        T& back()
        {
            return _c.back();
        }

        const T& back()const
        {
            return _c.back();
        }

        T& front()
        {
            return _c.front();
        }

        const T& front()const
        {
            return _c.front();
        }

        size_t size()const
        {
            return _c.size();
        }

        bool empty()const
        {
            return _c.empty();
        }

    private:
        Con _c;
    };

};

4.priority_queue的介绍及使用

4.1 priority_queue的介绍

priority_queue文档介绍

翻译:

  1. 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的。
  2. 此优先级队列类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元素)。
  3. 优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,队列提供一组特定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的顶部。
  4. 底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭代器访问,所以这里deque不可以,还要支持以下操作:

    empty():检测容器是否为空

    size():返回容器中有效元素个数

    front():返回容器中第一个元素的引用

    push_back():在容器尾部插入元素

    pop_back():删除容器尾部元素

  5. 标准容器类vector和deque满足这些需求。默认情况下,如果没有为特定的priority_queue类实例化指定容器类,则使用vector
  6. 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数make_heap、push_heap和pop_heap来自动完成此操作。

4.2 priority_queue的使用

优先级队列默认使用vector作为其底层存储数据的容器,在vector上又使用了堆算法将vector中元素构造成堆的结构,因此priority_queue就是堆,所有需要用到堆的位置,都可以考虑使用priority_queue。注意:默认情况下priority_queue是大堆。

函数声明接口说明
priority_queue()/priority_queue(first,
last)
构造一个空的优先级队列
empty( )检测优先级队列是否为空,是返回true,否则返回
false
top( )返回优先级队列中最大(最小元素),即堆顶元素
push(x)在优先级队列中插入元素x
pop()删除优先级队列中最大(最小)元素,即堆顶元素

默认情况下priority_queue是大堆。如果要建立小堆,这里还涉及到仿函数。我们这里先简单了解一下

仿函数类似于C语言中的函数指针

示例:

//仿函数
class Less
{
public:
	bool operator()(int x,int y)
	{
		return x < y;
	}
};

void test6()
{
	Less less;
	//仿函数,函数对象
	cout << less(2, 3) << endl;//less是一个对象而不是一个函数名
    //输出1 
	cout << less.operator()(2, 3) << endl;
}

通过对()括号进行运算符重载,即可实现大小的比较。我们下面定义两个类模板,来确定比较的方法,然后传入优先级队列,即可改变比较的方法。

//仿函数

template<class T>
class Less
{
public:
	bool operator()(const T& x, const T& y)
	{
		return x < y;
	}
};

template<class T>
class Greater
{
public:
	bool operator()(const T& x, const T& y)
	{
		return x > y;
	}
};

 建立小堆,greater是由算法库提供的比较方式,与上面写的Greater类似。

#include <vector>
#include <queue>
#include <functional> // greater算法的头文件

void TestPriorityQueue()
{
    // 默认情况下,创建的是大堆,其底层按照小于号比较
    vector<int> v{3,2,7,6,0,4,1,9,8,5};
    priority_queue<int> q1;
    for (auto& e : v)
    q1.push(e);
    cout << q1.top() << endl;
    // 如果要创建小堆,将第三个模板参数换成greater比较方式
    priority_queue<int, vector<int>, greater<int>> q2(v.begin(), v.end());
    cout << q2.top() << endl;
}

如果在priority_queue中放自定义类型的数据,用户需要在自定义类型中提供> 或者< 的重载。

3.3 priority_queue的模拟实现

模拟代码:

#include<vector>
using namespace std;

template<class T>
class Less
{
public:
	bool operator()(const T& x, const T& y)
	{
		return x < y;
	}
};

namespace xlh
{
	template<class T,class Container = vector<T>, class Compare = Less<T>>
	class priority_queue
	{
	public:

		priority_queue()
		{}

		template<class InputIterator>
		priority_queue(InputIterator frist, InputIterator last)
			:_con(frist,last)
		{
			//向下调整建堆
			for (int i = (_con.size() - 1 - 1) / 2; i >= 0; i--)
			{
				adjust_down(i);
			}
			//直接用push相当于向上调整。
		}


		void adjust_up(int child)
		{
			int parent = (child - 1) / 2;//减一除2是不会小于0的,因为-0.5 == 0
			Compare com;
			while (child > 0)
			{

				//if(_con[child]>_con[parent])
				if (com(_con[parent],_con[child]))
				{
					swap(_con[child], _con[parent]);
					child = parent;
					parent = (child - 1) / 2;
				}
				else
				{
					break;
				}
			}

		}

		void push(const T& x)
		{
			_con.push_back(x);
			adjust_up(_con.size() - 1);
		}

		void adjust_down(int parent)
		{
			Compare com;

			int child = parent * 2 + 1;

			while (child < _con.size())
			{
				//if (child + 1 < _con.size() && _con[child] < _con[child + 1])
				if (child + 1 < _con.size() && com(_con[child] , _con[child + 1]))
				{
					child++;
				}

				//if (_con[parent] < _con[child]);
				if (com(_con[parent] , _con[child]))
				{
					swap(_con[parent], _con[child]);
					parent = child;
					child = parent * 2 + 1;
				}
				else
				{
					break;
				}
			}
		}

		void pop()
		{
			swap(_con[0], _con[_con.size() - 1]);
			_con.pop_back();
			adjust_down(0);
		}


		T& top()
		{
			return _con[0];
		}

		bool empty()
		{
			return _con.empty();
		}

		size_t size()
		{
			return _con.size();
		}

	private:
		Container _con;
	};
}

本篇结束!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1257258.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一起学docker系列之十一使用 Docker 安装 Redis 并配置持久化存储

目录 前言1 基本安装步骤安装Redis镜像&#xff1a;查看已下载的Redis镜像&#xff1a;运行Redis容器&#xff1a;进入Redis容器&#xff1a;使用Redis CLI进行基本操作&#xff1a; 2 配置文件同步准备配置文件&#xff1a;修改Redis配置文件 /app/redis/redis.conf&#xff1…

【Java+SQL Server】前后端连接小白教程

目录 &#x1f4cb; 流程总览 ⛳️【SQL Server】数据库操作 1. 新建数据库text 2. 新建表 3. 编辑表 ⛳️【IntelliJ IDEA】操作 1. 导入jar包 2. 运行显示错误 &#x1f4cb; 流程总览 ⛳️【SQL Server】数据库操作 打开SQL Server数据库-->sa登录-->新建数据库…

如何处理枚举类型(下)

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 上一篇我们通过编写MyB…

百面深度学习-自然语言处理

自然语言处理 神经机器翻译模型经历了哪些主要的结构变化&#xff1f;分别解决了哪些问题&#xff1f; 神经机器翻译&#xff08;Neural Machine Translation, NMT&#xff09;是一种使用深度学习技术来实现自动翻译的方法。自从提出以来&#xff0c;NMT模型经历了几个重要的…

Couchdb 命令执行漏洞复现 (CVE-2017-12636)

Couchdb 命令执行漏洞复现 &#xff08;CVE-2017-12636&#xff09; 1、下载couchdb.py 2、修改目标和反弹地址 3、Python3调用执行即可 couchdb.py文件下载地址: https://github.com/vulhub/vulhub/blob/master/couchdb/CVE-2017-12636/exp.py ‍ 在VULFocus上开启环境 …

指针(1)

指针基本概念&#xff1a; 1.指针变量是一个变量&#xff0c;用来存放地址&#xff0c;地址唯一标识一块地址空间。 2.指针的大小固定是4/8个字节&#xff08;32位平台/64位平台&#xff09;。 3.指针有类型&#xff0c;指针的类型决定-整数的步长&#xff0c;以及解引用时的…

数据分析项目实战!Python分析员工为何离职

大家好&#xff0c;我是小F&#xff5e; 今天给大家介绍一个Python数据分析项目实战&#xff0c;不仅包含代码&#xff0c;还提供分析数据集。 员工流失或是员工离开公司的比率是公司关注的一个重要问题。它不仅会导致宝贵人才的流失&#xff0c;还会产生成本并破坏生产力。了解…

Nginx(资源压缩)

建立在动静分离的基础之上&#xff0c;如果一个静态资源的Size越小&#xff0c;那么自然传输速度会更快&#xff0c;同时也会更节省带宽&#xff0c;因此我们在部署项目时&#xff0c;也可以通过Nginx对于静态资源实现压缩传输&#xff0c;一方面可以节省带宽资源&#xff0c;第…

vim+xxd编辑十六进制的一个大坑:自动添加0x0a

问题描述 今天在做一个ctf题&#xff0c;它给了一个elf文件&#xff0c;我要做的事情是修复这个elf文件&#xff0c;最后执行它&#xff0c;这个可执行文件会计算它自身的md5作为这道题的flag。我把所有需要修复的地方都修复了&#xff0c;程序也能成功运行&#xff0c;但是fl…

打包SpringBoot 项目为本地应用

使用工具&#xff1a;exe4j、Inno Setup Compiler 步骤&#xff1a; 1&#xff0c;将dll包放入项目根路径下&#xff1b; 2&#xff0c;idea 使用Maven打jar包&#xff1b; 3&#xff0c;使用exe4j 工具进行打包&#xff1b; 打开工具首页不动&#xff08;直接 next&#xff…

论文阅读:C2VIR-SLAM: Centralized Collaborative Visual-Inertial-Range SLAM

前言 论文全程为C2VIR-SLAM: Centralized Collaborative Visual-Inertial-Range Simultaneous Localization and Mapping&#xff0c;是发表在MDPI drones&#xff08;二区&#xff0c;IF4.8&#xff09;上的一篇论文。这篇文章使用单目相机、惯性测量单元( IMU )和UWB设备作为…

【Amazon】创建Amazon EFS 文件系统并将其挂载到Amazon EC2实例

文章目录 1. Amazon EFS文件系统2. Amazon EFS文件系统工作原理图3. 创建Amazon EFS 文件系统操作步骤3.1 创建安全组3.2 创建 EFS 文件系统3.3 启动 EC2 实例并挂载文件系统 4.清理资源4.1 终止 EC2 实例4.2 删除 EFS 文件系统 5.参考链接 1. Amazon EFS文件系统 Amazon EFS …

水面倒影可视化渲染方法

水面材质在三维可视化场景中的使用非常广泛。水面材质非常重要的一个光学特性就是反射倒影&#xff0c;有了倒影的加持能使水面更加逼真的渲染出来。本文主要讨论水面材质中倒影的渲染方法。 要有倒影&#xff0c;必须先有水面&#xff0c;第一步要做的就是确定水面所在的平面…

关于DCDC电源中的PWM与PFM

在开关电源DCDC中&#xff0c;我们经常会听到PWM模式与PFM模式。 关于&#xff0c;这两种模式&#xff0c;小编在之前的文章中&#xff0c;做过简单的描述。今天就来针对性的就这两种模式展开讲讲。 PWM&#xff1a;脉冲宽度调制&#xff0c;即频率不变&#xff0c;不断调整脉…

静态路由配置过程

静态路由 静态路由简介 路由器在转发数据时&#xff0c;要先在路由表&#xff08;Routing Table&#xff09;中在找相应的路由&#xff0c;才能知道数据包应该从哪个端口转发出去。路由器建立路由表基本上有以下三种途径。 &#xff08;1&#xff09;直连路由&#xff1a;路由…

pytorch中的激活函数详解

1 激活函数介绍 1.1 什么是激活函数 激活函数是神经网络中引入的非线性函数&#xff0c;用于捕获数据中的复杂关系。它来自动物界的灵感&#xff0c;动物的神经元会接受来自对它有作用的其他神经元的信号&#xff0c;当然这些信号对该神经元的作用大小不同&#xff08;即具有不…

最火web大屏可视化编辑器

前言&#xff1a; 乐吾乐Le5le大屏可视化设计器&#xff0c;零代码实现物联网、工业智能制造等领域的可视化大屏、触摸屏端UI以及工控可视化的解决方案。同时也是一个Web组态工具&#xff0c;支持2D、3D等多种形式&#xff0c;用于构建具有实时数据展示、监控预警、丰富交互的组…

【nowcoder】BM4 合并两个排序的链表

题目&#xff1a; 题目分析&#xff1a; 题目分析转载 代码实现&#xff1a; package BMP4;import java.util.List;class ListNode {int val;ListNode next null;public ListNode(int val) {this.val val;} } public class BM4 {/*** 代码中的类名、方法名、参数名已经指定…

rust tokio select!宏详解

rust tokio select!宏详解 简介 本文介绍Tokio中select!的用法&#xff0c;重点是使用过程中可能遇到的问题&#xff0c;比如阻塞问题、优先级问题、cancel safe问题。在Tokio 中&#xff0c;select! 是一个宏&#xff0c;用于同时等待多个异步任务&#xff0c;并在其中任意一…

jenkins流水线(pipline)实例

1、pipline 语法介绍 声明式的pipeline语法格式 1. 所有的声明都必须包含在pipeline{}中 2. 块只能有节段&#xff0c;指令&#xff0c;步骤或者赋值语句组成 3. 阶段&#xff1a;agent&#xff0c;stages&#xff0c;post&#xff0c;steps 4. 指令&#xff1a;environment&a…