三轴加速度计LIS2DW12开发(1)----轮询获取加速度数据

news2025/4/27 12:47:07

STM32WB55开发.6--FUS更新

  • 概述
  • 视频教学
  • 通信模式
  • 管脚定义
  • IIC通信模式
  • 速率
  • 生成STM32CUBEMX
  • 串口配置
  • IIC配置
  • CS和SA0设置
  • 串口重定向
  • 参考程序
  • 初始换管脚
  • 获取ID
  • 复位操作
  • BDU设置
  • 设置传感器的量程
  • 配置过滤器链
  • 配置电源模式
  • 设置输出数据速率
  • 轮询获取加速度
  • 演示

概述

本文将介绍如何驱动和利用LIS2DW12传感器,实现精确的运动感应功能。
IS2DW12是一款高性能、超低功耗的三轴线性加速度计,属于“femto”系列,利用了成熟的微机械加速度计制造工艺。这个传感器提供可选择的全量程±2g/±4g/±8g/±16g,能够以1.6 Hz至1600 Hz的数据输出率测量加速度。它包含了一个32级的先进先出(FIFO)缓冲区,用于存储数据,以减少主处理器的干预需求。
此外,LIS2DW12具备自测功能,可在最终应用中验证传感器功能,并集成了一个处理运动和加速度检测的内部引擎。这包括自由落体、唤醒、敲击识别、活动/静止监测、静止/运动检测、纵向/横向检测以及6D/4D定向等功能。

最近在弄ST和瑞萨RA的课程,需要样片的可以加群申请:615061293 。

在这里插入图片描述

视频教学

通信模式

对于LIS2DW12,可以使用SPI或者IIC进行通讯。
最小系统图如下所示。

在这里插入图片描述

在CS管脚为1的时候,为IIC模式。


本文使用的板子原理图如下所示。
在这里插入图片描述

管脚定义

在这里插入图片描述

IIC通信模式

在使用IIC通讯模式的时候,SA0是用来控制IIC的地址位的。
对于IIC的地址,可以通过SDO/SA0引脚修改。SDO/SA0引脚可以用来修改设备地址的最低有效位。如果SDO/SA0引脚连接到电源电压,LSb(最低有效位)为’1’(地址0011001b);否则,如果SDO/SA0引脚连接到地线,LSb的值为’0’(地址0011000b)。

在这里插入图片描述
对应的IIC接口如下所示。
主要使用的管脚为CS、SCL、SDA、SA0。

在这里插入图片描述

速率

该模块支持的速度为普通模式(100k)和快速模式(400k)。
在这里插入图片描述

生成STM32CUBEMX

用STM32CUBEMX生成例程,这里使用MCU为STM32WB55RG。
配置时钟树,配置时钟为32M。

在这里插入图片描述

串口配置

查看原理图,PB6和PB7设置为开发板的串口。

在这里插入图片描述
配置串口。

在这里插入图片描述

IIC配置

在这里插入图片描述
配置IIC为快速模式,速度为400k。
在这里插入图片描述

CS和SA0设置

在这里插入图片描述

串口重定向

打开魔术棒,勾选MicroLIB

在这里插入图片描述

在main.c中,添加头文件,若不添加会出现 identifier “FILE” is undefined报错。

/* USER CODE BEGIN Includes */
#include "stdio.h"
/* USER CODE END Includes */

函数声明和串口重定向:

/* USER CODE BEGIN PFP */
int fputc(int ch, FILE *f){
	HAL_UART_Transmit(&huart1 , (uint8_t *)&ch, 1, 0xFFFF);
	return ch;
}
/* USER CODE END PFP */

参考程序

https://github.com/STMicroelectronics/lis2dw12-pid

初始换管脚

由于需要向LIS2DW12_I2C_ADD_H写入以及为IIC模式。
在这里插入图片描述

所以使能CS为高电平,配置为IIC模式。
配置SA0为高电平。

  HAL_GPIO_WritePin(GPIOC, CS_Pin, GPIO_PIN_SET);
  HAL_GPIO_WritePin(GPIOC, SA0_Pin, GPIO_PIN_SET);

获取ID

我们可以向WHO_AM_I (0Fh)获取固定值,判断是否为0x44。
在这里插入图片描述

lis2dw12_device_id_get为获取函数。
在这里插入图片描述

对应的获取ID驱动程序,如下所示。

  /* Wait sensor boot time */
  platform_delay(BOOT_TIME);
  /* Check device ID */
  lis2dw12_device_id_get(&dev_ctx, &whoamI);
	printf("LIS2DW12_ID=0x%x,whoamI=0x%x",LIS2DW12_ID,whoamI);
  if (whoamI != LIS2DW12_ID)
    while (1) {
      /* manage here device not found */
    }

复位操作

可以向CTRL2 (21h)的SOFT_RESET寄存器写入1进行复位。

在这里插入图片描述
lis2dw12_reset_set为重置函数。

在这里插入图片描述

对应的驱动程序,如下所示。

  /* Restore default configuration */
  lis2dw12_reset_set(&dev_ctx, PROPERTY_ENABLE);

  do {
    lis2dw12_reset_get(&dev_ctx, &rst);
  } while (rst);

BDU设置

在很多传感器中,数据通常被存储在输出寄存器中,这些寄存器分为两部分:MSB和LSB。这两部分共同表示一个完整的数据值。例如,在一个加速度计中,MSB和LSB可能共同表示一个加速度的测量值。
连续更新模式(BDU = ‘0’):在默认模式下,输出寄存器的值会持续不断地被更新。这意味着在你读取MSB和LSB的时候,寄存器中的数据可能会因为新的测量数据而更新。这可能导致一个问题:当你读取MSB时,如果寄存器更新了,接下来读取的LSB可能就是新的测量值的一部分,而不是与MSB相对应的值。这样,你得到的就是一个“拼凑”的数据,它可能无法准确代表任何实际的测量时刻。
块数据更新(BDU)模式(BDU = ‘1’):当激活BDU功能时,输出寄存器中的内容不会在读取MSB和LSB之间更新。这就意味着一旦开始读取数据(无论是先读MSB还是LSB),寄存器中的那一组数据就被“锁定”,直到两部分都被读取完毕。这样可以确保你读取的MSB和LSB是同一测量时刻的数据,避免了读取到代表不同采样时刻的数据。
简而言之,BDU位的作用是确保在读取数据时,输出寄存器的内容保持稳定,从而避免读取到拼凑或错误的数据。这对于需要高精度和稳定性的应用尤为重要。
可以向CTRL2 (21h)的BDU寄存器写入1进行开启。

在这里插入图片描述

对应的驱动程序,如下所示。

/* Enable Block Data Update */
  lis2dw12_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);

设置传感器的量程

FS[1:0] - 全量程选择:这两个位用于设置传感器的量程。量程决定了传感器可以测量的最大加速度值。例如,量程可以设置为±2g、±4g、±8g或±16g。这允许用户根据应用的特定需求调整传感器的灵敏度。
在这里插入图片描述

对应的驱动程序,如下所示。

  /* Set full scale */
  lis2dw12_full_scale_set(&dev_ctx, LIS2DW12_2g);

配置过滤器链

lis2dw12_filter_path_set(&dev_ctx, LIS2DW12_LPF_ON_OUT);:设置加速度计输出的过滤器路径。这里选择了输出上的低通滤波器(LPF),用于去除高频噪声。
lis2dw12_filter_bandwidth_set(&dev_ctx, LIS2DW12_ODR_DIV_4);:设置过滤器的带宽。这里的设置是将输出数据率(ODR)除以4,进一步决定了滤波器的截止频率。

配置电源模式

lis2dw12_power_mode_set(&dev_ctx, LIS2DW12_HIGH_PERFORMANCE);:这个调用设置加速度计的电源模式为高性能模式。这通常意味着更高的功耗,但提供更精确的测量。

设置输出数据速率

lis2dw12_data_rate_set(&dev_ctx, LIS2DW12_XL_ODR_25Hz);:设置加速度计的输出数据速率为每秒25次。输出数据速率决定了传感器多久采集一次数据,并影响数据的实时性和功耗。

  /* Enable Block Data Update */
  lis2dw12_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);
  /* Set full scale */
  lis2dw12_full_scale_set(&dev_ctx, LIS2DW12_2g);
  /* Configure filtering chain
   * Accelerometer - filter path / bandwidth
   */
  lis2dw12_filter_path_set(&dev_ctx, LIS2DW12_LPF_ON_OUT);
  lis2dw12_filter_bandwidth_set(&dev_ctx, LIS2DW12_ODR_DIV_4);
  /* Configure power mode */
  lis2dw12_power_mode_set(&dev_ctx, LIS2DW12_HIGH_PERFORMANCE);
  /* Set Output Data Rate */
  lis2dw12_data_rate_set(&dev_ctx, LIS2DW12_XL_ODR_25Hz);

轮询获取加速度

检查新数据是否可用:
lis2dw12_flag_data_ready_get(&dev_ctx, &reg);:这个函数调用检查加速度计是否有新的数据可读。如果有新数据,reg 变量将被设置为非零值。
主要为读取STATUS (27h)的DRDY位。
在这里插入图片描述
如果 reg 是非零的,说明有新的加速度数据可读。
lis2dw12_acceleration_raw_get(&dev_ctx, data_raw_acceleration);:这个函数调用实际读取加速度计的原始数据,并存储在 data_raw_acceleration 数组中。
数据在28h-2Dh中。

在这里插入图片描述

在这里插入图片描述
加速度数据首先以原始格式(通常是整数)读取,然后需要转换为更有意义的单位,如毫重力(mg)。这里的转换函数 lis2dw12_from_fs2_to_mg() 根据加速度计的量程(这里假设为±2g)将原始数据转换为毫重力单位。
acceleration_mg[0] = lis2dw12_from_fs2_to_mg(data_raw_acceleration[0]); 等三行代码分别转换 X、Y、Z 轴的加速度数据。

在这里插入图片描述

● LIS2DW12 加速度计通常会有一个固定的位分辨率,比如 16 位(即输出值是一个 16 位的整数)。这意味着加速度计可以输出的不同值的总数是 2^16=65536。这些值均匀地分布在 -2g 到 +2g 的范围内。
● 因此,这个范围(4g 或者 4000 mg)被分成了 65536 个步长。
● 每个步长的大小是 4000 mg/65536≈0.061 mg/LSB
所以,函数中的乘法 ((float_t)lsb) * 0.061f 是将原始的整数值转换为以毫重力(mg)为单位的加速度值。这个转换对于将加速度计的原始读数转换为实际的物理测量值是必需的。

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {

    uint8_t reg;
    /* Read output only if new value is available */
    lis2dw12_flag_data_ready_get(&dev_ctx, &reg);

    if (reg) {
      /* Read acceleration data */
      memset(data_raw_acceleration, 0x00, 3 * sizeof(int16_t));
      lis2dw12_acceleration_raw_get(&dev_ctx, data_raw_acceleration);
      //acceleration_mg[0] = lis2dw12_from_fs8_lp1_to_mg(data_raw_acceleration[0]);
      //acceleration_mg[1] = lis2dw12_from_fs8_lp1_to_mg(data_raw_acceleration[1]);
      //acceleration_mg[2] = lis2dw12_from_fs8_lp1_to_mg(data_raw_acceleration[2]);
      acceleration_mg[0] = lis2dw12_from_fs2_to_mg(
                             data_raw_acceleration[0]);
      acceleration_mg[1] = lis2dw12_from_fs2_to_mg(
                             data_raw_acceleration[1]);
      acceleration_mg[2] = lis2dw12_from_fs2_to_mg(
                             data_raw_acceleration[2]);
      printf("Acceleration [mg]:X=%4.2f\tY=%4.2f\tZ=%4.2f\r\n",acceleration_mg[0], acceleration_mg[1], acceleration_mg[2]);
    }
HAL_Delay(100);

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */

演示

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1254585.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

智能优化算法应用:基于粒子群算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于粒子群算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于粒子群算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.粒子群算法4.实验参数设定5.算法结果6.参考文献7.…

烧烤店点餐外卖配送管理小程序作用如何

烧烤是人们爱吃的食品之一,尤其到了晚上商业小吃街,烧烤店里往往是坐满了人,甚至还有排队的,从业商家众多,足可见该餐饮细分领域在市场中的欢迎程度。 而在实际经营中,烧烤店经营痛点也不小。 随着互联网…

注意力机制(Attention Mechanism)

目录 1. 简介:探索注意力机制的世界 2. 历史背景 3. 核心原理 4. 应用案例 5. 技术挑战与未来趋势 6. 图表和示例 7. Conclusion 1. 简介:探索注意力机制的世界 在当今的人工智能(AI)和机器学习(ML)…

Linux内核--内存管理(一)任务空间管理

目录 一、引言 二、基本概念梳理 三、用户态进程内存管理 ------>3.1、用户态 ------>3.2、内核态 ------>3.3、内存管理结构 ------>3.4、mm_struct ------>4.5、vm_area_struct 四、内核态结构 ------>4.1、32位内核态结构 ------>4.2、64位…

vue3+ts 兄弟组件之间传值

父级&#xff1a; <template><div><!-- <A on-click"getFlag"></A><B :flag"Flag"></B> --><A></A><B></B></div> </template><script setup lang"ts"> i…

【教学类-06-12】20231126 (一)二位数 如何让加减乘除题目从小到大排序(以1-20之间加法为例,做正序排列用)

结果展示 优化后 优化前 背景需求&#xff1a; 生成列表 单独抽取显示题目排序方法 存在问题: 我希望 00 01 02……这样排序&#xff0c;但是实际上&#xff0c;除了第一个加数会从小到大排序&#xff0c;第二个被加数的第十位数和个位数都会从小到大排序&#xff0c;也就是…

【电路笔记】-快速了电阻

电阻类型 文章目录 电阻类型1、概述2、电阻器的组成类型2.1 碳电阻器2.2 薄膜电阻器2.3 绕线电阻器 3、总结 电阻器是所有电子元件中最基本、最常用的元件&#xff0c;人们几乎认为电阻器是理所当然的&#xff0c;但它们在电路中起着至关重要的作用。 1、概述 有许多不同类型的…

2018年2月26日 Go生态洞察:2017年Go用户调查结果分析

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

使用JS脚本刷点击率

使用JS脚本刷点击率 1.使用谷歌浏览器&#xff0c;登录国开平台&#xff0c;打开《管理学基础》课程导学的“学什么”&#xff0c;保证看得到右下角的“下一个”&#xff0c;然后在“下一个”右键点检查。 2.复制以下JS代码&#xff0c;在右上角“Console”标签&#xff08;…

C语言基础介绍

1. C语言基础知识 C语言是一种计算机编程语言&#xff0c;是一门用于编写系统软件和应用软件的高级语言。C语言的基础知识包括&#xff1a; 数据类型&#xff1a;C语言中的数据类型包括整型、浮点型、字符型等。 变量&#xff1a;C语言中使用变量来存储数据&#xff0c;变量必…

全球SAR卫星大盘点与回波数据处理专栏目录

近年来&#xff0c;随着商业航天的蓬勃发展&#xff0c;商业SAR卫星星座成为美欧等主要航天国家的发展重点&#xff0c;目前已在全球范围内涌现出众多初创公司进军商业SAR领域&#xff0c;开始构建大规模商业微小SAR卫星星座&#xff0c;其所具有的创新服务能力将为传统的商业遥…

【Android】Android Framework系列--Launcher3各启动场景源码分析

Android Framework系列–Launcher3各启动场景源码分析 Launcher3启动场景 Launcher3是Android系统提供的默认桌面应用(Launcher)&#xff0c;它的源码路径在“packages/apps/Launcher3/”。 Launcher3的启动场景主要包括&#xff1a; 开机后启动&#xff1a;开机时&#xff…

摄像馆服务预约管理系统会员小程序作用是什么

摄像馆不少人并不会经常去&#xff0c;除了有拍婚纱照或工作照等&#xff0c;一般很少会进店&#xff0c;但由于摄像涵盖多个服务项目&#xff0c;因此总体来讲&#xff0c;市场需求度还是比较高的&#xff0c;一个城市也有多个品牌&#xff0c;而传统门店经营也面临不少痛点。…

网络篇---第一篇

系列文章目录 文章目录 系列文章目录前言一、HTTP 响应码有哪些?分别代表什么含义?二、Forward 和 Redirect 的区别?三、Get 和 Post 请求有哪些区别?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男…

可燃气体监测仪助力燃气管网安全监测,效果一览

城市地下管线是指城市范围内供应水、排放水、燃气等各类管线及其附属设施&#xff0c;它们是保障城市正常运转的重要基础设施且影响着城市生命线。其中燃气引发的事故近些年不断增加&#xff0c;由于燃气管线深埋地下环境复杂&#xff0c;所以仅仅依赖人工巡查难以全面有效地防…

STM32-SPI3控制MCP3201、MCP3202(Sigma-Delta-ADC芯片)

STM32-SPI3控制MCP3201、MCP3202&#xff08;Sigma-Delta-ADC芯片&#xff09; 原理图手册说明功能方框图引脚功能数字输出编码与实值的转换分辨率设置与LSB最小和最大输出代码&#xff08;注&#xff09; 正负符号寄存器位MSB数字输出编码数据转换的LSB值 将设备输出编码转换为…

linxu磁盘介绍与磁盘管理

df (disk free) 列出文件系统的整体磁盘使用量 df -h du &#xff08;desk used&#xff09; 检查磁盘空间使用量 du --help fdisk 用来磁盘分区 fdisk -l

FreeRTOS学习之路,以STM32F103C8T6为实验MCU(2-7:软件定时器)

学习之路主要为FreeRTOS操作系统在STM32F103&#xff08;STM32F103C8T6&#xff09;上的运用&#xff0c;采用的是标准库编程的方式&#xff0c;使用的IDE为KEIL5。 注意&#xff01;&#xff01;&#xff01;本学习之路可以通过购买STM32最小系统板以及部分配件的方式进行学习…

Blender学习--模型贴图傻瓜级教程

Blender 官方文档 1. Blender快捷键&#xff1a; 快捷键说明 按住鼠标滚轮&#xff1a;移动视角Tab&#xff1a;切换编辑模式和物体模式鼠标右键&#xff1a; 编辑模式&#xff1a; 物体模式&#xff1a; 其他&#xff1a; 2. 下面做一个球体贴一张纹理的操作 2.1 效果如下…

SpringCloud之Gateway(统一网关)

文章目录 前言一、搭建网关服务1、导入依赖2、在application.yml中写配置 二、路由断言工厂Route Predicate Factory三、路由过滤器 GatewayFilter案例1给所有进入userservice的请求添加一个请求头总结 四、全局过滤器 GlobalFilter定义全局过滤器&#xff0c;拦截并判断用户身…