FPGA模块——SPI协议(读写FLASH)

news2024/11/19 11:27:59

FPGA模块——SPI协议(读写FLASH)

  • (1)FLASH芯片 W25Q16BV
  • (2)SPI协议
  • (3)芯片部分命令
    • 1.Write Enable(06h)
    • 2.Chip Erase (C7h / 60h)
    • 3.写指令(02h)
    • 4.读指令(03h)
  • (4)代码
    • 1. FPGA做主机的SPI协议
    • 2. SPI协议的使用

(1)FLASH芯片 W25Q16BV

芯片引脚图:
在这里插入图片描述

内部结构图:
存储区域总共分成了32块,每块64KB。每块又分成了16个部分,每个部分4KB。方便进行读取和局部操作。
在这里插入图片描述
电路设计
在这里插入图片描述

(2)SPI协议

SPI的四种模式
在这里插入图片描述

这里使用这个模式:
主机和从机在时钟上升沿放入要输出的数据,在时钟下降沿读取要输入的数据。
8个时钟后交换一个字节8位数据(高位在前)。
在这里插入图片描述

(3)芯片部分命令

有个输入时序的要求 开始时CS拉低等待(tSLCH要求最小5ns)再开始, 结束时CS拉高等待(tSHSL用100ns )再进行下一次操作。
在这里插入图片描述

这个寄存器的第一位数据可以判断操作是否完成(BUSY位)
在这里插入图片描述

1.Write Enable(06h)

写使能:开始时CS拉低等待(tSLCH要求最小5ns)再开始,结束时CS拉高等待(tSHSL取100ns )再进行下一次操作。
在这里插入图片描述

2.Chip Erase (C7h / 60h)

整片擦除,要判断操作是否完成
在这里插入图片描述

3.写指令(02h)

数据写多了会把之前的数据覆盖掉,要判断操作是否完成。
在这里插入图片描述

4.读指令(03h)

要判断操作是否完成
在这里插入图片描述

(4)代码

1. FPGA做主机的SPI协议

在这里插入图片描述
对信号进行同步和提前准备:
100m时钟和clk_cnt配合进行数据的读取和输出(clk_cnt有等于1和0的时候)
spi_clk基于100m时钟输出一个相当于clk_cnt的延时半个周期的时钟,确保输入输出数据稳定。

module spi_drive(

	input             clk_100m      ,
	input             sys_rst_n     ,
	
	//user interface
	input             spi_start     ,//spi开启使能。
	input [7:0 ]      spi_cmd       ,//FLAH操作指令
	input [23:0]      spi_addr      ,//FLASH地址
	input [7:0 ]      spi_data      ,//FLASH写入的数据
	input [3:0 ]      cmd_cnt       ,
	
	output            idel_flag_r   ,//空闲状态标志的上升沿 
	output reg        w_data_req    ,//FLASH写数据请求 
	output reg [7:0]  r_data        ,//FLASH读出的数据
	output reg        erro_flag     ,//读出的数据错误标志
	
	//spi interface
	output reg        spi_cs        ,//SPI从机的片选信号,低电平有效。
	output reg        spi_clk       ,//主从机之间的数据同步时钟。
	output reg        spi_mosi      ,//数据引脚,主机输出,从机输入。
	input             spi_miso       //数据引脚,主机输入,从机输出。

);

//状态机
parameter IDLE         =4'd0;//空闲状态
parameter WEL          =4'd1;//写使能状态
parameter S_ERA        =4'd2;//扇区擦除状态
parameter C_ERA        =4'd3;//全局擦除
parameter READ         =4'd4;//读状态
parameter WRITE        =4'd5;//写状态
parameter R_STA_REG    =4'd6;

//指令集
parameter WEL_CMD      =8'h06;
parameter S_ERA_CMD    =8'h20;
parameter C_ERA_CMD    =8'hc7;
parameter READ_CMD     =8'h03;
parameter WRITE_CMD    =8'h02;
parameter R_STA_REG_CMD=8'h05;

//wire define
wire      idel_flag;

//reg define
reg[3:0]  current_state  ;
reg[3:0]  next_state     ;
reg[7:0 ] data_buffer    ;
reg[7:0 ] cmd_buffer     ;
reg[7:0 ] sta_reg        ;
reg[23:0] addr_buffer    ;
reg[31:0] bit_cnt        ;
reg       clk_cnt        ;
reg       dely_cnt       ;
reg[31:0] dely_state_cnt ;
reg[7:0 ] rd_data_buffer ;
reg       spi_clk0       ;
reg       stdone         ;
reg[7:0 ] data_check     ;
reg       idel_flag0     ;
reg       idel_flag1     ;

//*****************************************************
//**                    main code
//*****************************************************

//*抓取上升沿
assign idel_flag=(current_state==IDLE)?1:0;//空闲状态标志
assign idel_flag_r=idel_flag0&&(~idel_flag1);//空闲状态标志的上升沿

//*抓取上升沿要用的
always @(posedge clk_100m or negedge sys_rst_n )begin
	if(!sys_rst_n)begin
		idel_flag0<=1'b1;
		idel_flag1<=1'b1;
	end
	else begin
		idel_flag0<=idel_flag;
		idel_flag1<=idel_flag0;
	end
end

//请求数据 + 把数据放入buffer 
always @(posedge clk_100m or negedge sys_rst_n )begin
	if(!sys_rst_n)
		w_data_req<=1'b0;
	else if((bit_cnt+2)%8==0&&bit_cnt>=30&&clk_cnt==0&&current_state==WRITE) //提前2个时钟周期
		w_data_req<=1'b1;
	else
		w_data_req<=1'b0;
end

always @(posedge clk_100m or negedge sys_rst_n )begin//读出的数据移位寄存
	if(!sys_rst_n)
		rd_data_buffer<=8'd0;
	else if(bit_cnt>=32&&bit_cnt<=2080&&clk_cnt==0&&current_state==READ)									
		rd_data_buffer<={rd_data_buffer[6:0],spi_miso};
	else
		rd_data_buffer<=rd_data_buffer;
end

always @(posedge clk_100m or negedge sys_rst_n )begin//检查读出的数据是否正确
	if(!sys_rst_n)
		data_check<=8'd0;
	else if(bit_cnt%8==0&&bit_cnt>=40&&clk_cnt==1&&current_state==READ)
		data_check<=data_check+1'd1;
	else
		data_check<=data_check;
end

always @(posedge clk_100m or negedge sys_rst_n )begin//读出的数据
	if(!sys_rst_n)
		r_data<=8'd0;
	else if(bit_cnt%8==0&&bit_cnt>38&&clk_cnt==1&&current_state==READ)
		r_data<=rd_data_buffer;
	else
		r_data<=r_data;
end

always @(posedge clk_100m or negedge sys_rst_n )begin//读出的数据错误标志
	if(!sys_rst_n)
		erro_flag<=1'd0;
	else if(bit_cnt>32&&bit_cnt<=2080&&current_state==READ&&cmd_cnt==6)begin
		if(data_check!=r_data)
			erro_flag<=1'd1;
		else
			erro_flag<=erro_flag;
		end
	else
		erro_flag<=erro_flag;
end
	
//*把数据放入buffer 提前一个周期
always @(posedge clk_100m or negedge sys_rst_n )begin
	if(!sys_rst_n)
		data_buffer<=8'd0;
	else if((bit_cnt+1)%8==0&&bit_cnt>30&&clk_cnt==1)//*把数据放入buffer 提前一个周期
		data_buffer<=spi_data;
	else if(clk_cnt==1&&current_state==WRITE&&bit_cnt>=32)
		data_buffer<={data_buffer[6:0],data_buffer[7]};
	else
		data_buffer<=data_buffer;
end

//*----位移cmd指令存储器 开始:cs选中且dely未生效,提前了100mhz的周期------------
//使50mhz时数据提前半个周期获得
always @(posedge clk_100m or negedge sys_rst_n )begin
	if(!sys_rst_n)
		cmd_buffer<=8'd0;
	else if(spi_cs==0&&dely_cnt==0)
		cmd_buffer<=spi_cmd;
	else if(clk_cnt==1&&(current_state==WEL||current_state==S_ERA||current_state==C_ERA
	       ||current_state==READ||current_state==WRITE||current_state==R_STA_REG)&&bit_cnt<8)
		cmd_buffer<={cmd_buffer[6:0],1'b1};
	else
		cmd_buffer<=cmd_buffer;
end

//取出地址每一位
always @(posedge clk_100m or negedge sys_rst_n )begin
	if(!sys_rst_n)
		addr_buffer<=8'd0;
	else if(spi_cs==0&&dely_cnt==0)
		addr_buffer<=spi_addr;
	else if(clk_cnt==1&&(current_state==READ||current_state==WRITE)&&bit_cnt>=8&&bit_cnt<32)
		addr_buffer<={addr_buffer[22:0],addr_buffer[23]};
	else
		addr_buffer<=addr_buffer;
end

//------------使能后clk_cnt输出50M时钟用于操作信号--------------
always @(posedge clk_100m or negedge sys_rst_n )begin
	if(!sys_rst_n)
		clk_cnt<=1'd0;
	else if(dely_cnt==1)
		clk_cnt<=clk_cnt+1'd1;
	else 
		clk_cnt<=1'd0;
end

//*---------cs选中器件后的信号输出的  dely_cnt 可以认为是使能操作------------
always @(posedge clk_100m or negedge sys_rst_n )begin
	if(!sys_rst_n)
		dely_cnt<=1'd0;
	else if(spi_cs==0)begin
	    if(dely_cnt<1)
			dely_cnt<=dely_cnt+1'd1;
		else
			dely_cnt<=dely_cnt;
	end
	else
		dely_cnt<=1'd0;
end

//*-----------------结束的延时计时器------------------------------------
always @(posedge clk_100m or negedge sys_rst_n )begin
	if(!sys_rst_n)
		dely_state_cnt<=1'd0;
	else if(spi_cs)begin
	    if(dely_state_cnt<400000000)
			dely_state_cnt<=dely_state_cnt+1'd1;
		else
			dely_state_cnt<=dely_state_cnt;
	end
	else
		dely_state_cnt<=1'd0;
end

//*-------------------------bit读写计数---------------------
always @(posedge clk_100m or negedge sys_rst_n )begin
	if(!sys_rst_n)
		bit_cnt<=11'd0;
	else if(dely_cnt==1)begin
			if(clk_cnt==1'b1)
				bit_cnt<=bit_cnt+1'd1;
			else
				bit_cnt<=bit_cnt;
	end
	else
		bit_cnt<=11'd0;
end

状态机 :每个状态该干什么,怎么转移
修改里面的命令和转态就可以移植到其他的地方了。

//三段式状态机
always @(posedge clk_100m or negedge sys_rst_n )begin
	if(!sys_rst_n)
		current_state<=IDLE;
	else
		current_state<=next_state;
end

always @(*)begin

	case(current_state)
	
	   IDLE: begin
	          if(spi_start&&spi_cmd==WEL_CMD)
				next_state=WEL;
			  else if(spi_start&&spi_cmd==C_ERA_CMD)
				next_state=C_ERA;
			  else if(spi_start&&spi_cmd==S_ERA_CMD)
				next_state=S_ERA;
			  else if(spi_start&&spi_cmd==READ_CMD)
				next_state=READ;
			  else if(spi_start&&spi_cmd==WRITE_CMD)
				next_state=WRITE;
			  else if(spi_start&&spi_cmd==R_STA_REG_CMD)
				next_state=R_STA_REG;
			  else
	            next_state=IDLE;
			end
	
		WEL: begin
			  if(stdone&&bit_cnt>=8)
				   next_state=IDLE;
			  else
		           next_state=WEL;
			  end
			 
		S_ERA: begin
				if(stdone)
					next_state=IDLE;
				else
					next_state=S_ERA;
				end
		C_ERA: begin		
				if(stdone)
					next_state=IDLE;
				else
					next_state=C_ERA;
				end
		READ: begin 		
				if(stdone&&bit_cnt>=8)
					next_state=IDLE;
				else
					next_state=READ;
				end
		WRITE: begin		
				 if(stdone&&bit_cnt>=8)
					next_state=IDLE;
				else
					next_state=WRITE;
				end
		R_STA_REG: begin		
				 if(stdone)
					next_state=IDLE;
				else
					next_state=R_STA_REG;
				end
		
	default: next_state=IDLE;			
	endcase				
end
									
always @(posedge clk_100m or negedge sys_rst_n )begin
	if(!sys_rst_n) begin
		spi_cs<=1'b1;
		spi_clk<=1'b0;
		spi_clk0<=1'b0;
		spi_mosi<=1'b0;	
		stdone<=1'b0;		
	end
	else begin
		case(current_state)
			IDLE: begin
				spi_cs<=1'b1;
				spi_clk<=1'b0;
				spi_mosi<=1'b0;				
			end
			
			WEL: begin
			     stdone<=1'b0;
				 spi_cs<=1'b0;
					 if(dely_cnt==1&&bit_cnt<8) begin						
						spi_clk0<=~spi_clk0;
						spi_clk<=spi_clk0;
						spi_mosi<=cmd_buffer[7];
						end
					 else if(bit_cnt==8&&clk_cnt==0)begin
					    stdone<=1'b1;
						spi_clk<=1'b0;						
						spi_mosi<=1'b0;						
					 end
					 else if(bit_cnt==8&&clk_cnt==1)begin
						spi_cs<=1'b1;						
				 end
				 end
			C_ERA: begin
					stdone<=1'b0;
			         if(dely_state_cnt==10)                
						spi_cs<=1'b0;
					 else if(dely_cnt==1&&bit_cnt<8) begin						
						spi_clk0<=~spi_clk0;
						spi_clk<=spi_clk0;
						spi_mosi<=cmd_buffer[7];
						end
					 else if(bit_cnt==8&&clk_cnt==0)begin
					    stdone<=1'b1;				    
						spi_clk<=1'b0;
						spi_mosi<=1'b0;	
					 end
					  else if(bit_cnt==8&&clk_cnt==1)begin
						spi_cs<=1'b1;						
				 end
				 end
			S_ERA: begin
			       stdone<=1'b0;				 
					if(dely_state_cnt==10)                
						spi_cs<=1'b0;
					 else if(dely_cnt==1&&bit_cnt<8) begin						
						spi_clk0<=~spi_clk0;
						spi_clk<=spi_clk0;
						spi_mosi<=cmd_buffer[7];
						end
					 else if(bit_cnt>=8&&bit_cnt<32&&spi_cs==0)begin
					    spi_cs<=1'b0;
						spi_clk0<=~spi_clk0;
						spi_clk<=spi_clk0;
						spi_mosi<=addr_buffer[23];
					 end
					 else if(bit_cnt==32&&clk_cnt==0) begin
						spi_cs<=1'b1;
						spi_clk<=1'b0;
						spi_mosi<=1'b0;
						stdone<=1'b1;
					 end
				 end
            READ: begin
			      stdone<=1'b0;
				  if(dely_state_cnt==10)                
						spi_cs<=1'b0;
					else if(dely_cnt==1&&bit_cnt<8) begin						
						spi_clk0<=~spi_clk0;
						spi_clk<=spi_clk0;
						spi_mosi<=cmd_buffer[7];
						end
					 else if(bit_cnt>=8&&bit_cnt<32&&spi_cs==0)begin					    
						spi_clk0<=~spi_clk0;
						spi_clk<=spi_clk0;
						spi_mosi<=addr_buffer[23];
					 end
					 else if(bit_cnt>=32&&bit_cnt<2080)begin						
						spi_clk0<=~spi_clk0;
						spi_clk<=spi_clk0;
						spi_mosi<=1'b0;						
					 end
					 else if(bit_cnt==2080&&clk_cnt==0) begin						
						spi_clk<=1'b0;
						spi_mosi<=1'b0;
						stdone<=1'b1;						
					 end
					  else if(bit_cnt==2080&&clk_cnt==1) begin
						spi_cs<=1'b1;
					 end
				 end
            WRITE: begin
			     stdone<=1'b0;
				  if(dely_state_cnt==10)                
						spi_cs<=1'b0;
					 else if(dely_cnt==1&&bit_cnt<8) begin						
						spi_clk0<=~spi_clk0;
						spi_clk<=spi_clk0;
						spi_mosi<=cmd_buffer[7];
						end
					 else if(bit_cnt>=8&&bit_cnt<32&&spi_cs==0)begin					   
						spi_clk0<=~spi_clk0;
						spi_clk<=spi_clk0;
						spi_mosi<=addr_buffer[23];
					 end
					 else if(bit_cnt>=32&&bit_cnt<2080)begin						
						spi_clk0<=~spi_clk0;
						spi_clk<=spi_clk0;
						spi_mosi<=data_buffer[7];
					 end
					 else if(bit_cnt==2080&&clk_cnt==0) begin
						
						spi_clk<=1'b0;
						spi_mosi<=1'b0;
						stdone<=1'b1;
					 end
					  else if(bit_cnt==2080&&clk_cnt==1) begin
						spi_cs<=1'b1;
					 end
                  end
			R_STA_REG:begin				              
						stdone<=1'b0;
				     if(dely_state_cnt==10)                
						spi_cs<=1'b0;
					else if(dely_cnt==1&&bit_cnt<8)begin						
						spi_clk0<=~spi_clk0;
						spi_clk<=spi_clk0;
						spi_mosi<=cmd_buffer[7];
						end
					 else if(bit_cnt==8)begin					   				    
						spi_clk0<=~spi_clk0;
						spi_clk<=spi_clk0;
						spi_mosi<=1'b0;						
					 end                      				 
					  else if(~spi_miso&&bit_cnt%8==0)begin
					    spi_clk<=1'b0;
						spi_cs<=1'b1;
						stdone<=1'b1;
				      end
					 else if(~spi_cs&&dely_cnt==1)begin
						spi_clk0<=~spi_clk0;
						spi_clk<=spi_clk0;
				 end	   			         	 
			  end 
             default: begin
			            stdone<=1'b0;
                        spi_cs<=1'b1;
				        spi_clk<=1'b0;
						spi_clk0<=1'b0;
				        spi_mosi<=1'b0;				        
			end
         endcase
	end
end

endmodule

2. SPI协议的使用

首先系统开始运行,来几个周期延伸。
spi_start信号只是一个周期脉冲。
idel_flag_r是进入空闲状态的标志位也就是意味着上一步操作完成。
cmd计数指令不断加来切换不同的命令。
spi_cmd 输出命令

module flash_rw(

	input            sys_clk      ,
	input            sys_rst_n    ,
	
	input            idel_flag_r  ,
	input            w_data_req   ,
	output reg[3:0 ] cmd_cnt      ,
	output reg       spi_start    ,//spi开启使能。
	output reg[7:0 ] spi_cmd      ,
	output reg[7:0 ] spi_data      
   
);

//指令集
parameter WEL_CMD      =16'h06;
parameter S_ERA_CMD    =16'h20;
parameter C_ERA_CMD    =16'hc7;
parameter READ_CMD     =16'h03;
parameter WRITE_CMD    =16'h02;
parameter R_STA_REG_CMD=8'h05 ;

//reg define
reg[3:0] flash_start;


//SPI 要写入的数据
always @(posedge sys_clk or negedge sys_rst_n )begin
	if(!sys_rst_n)
		flash_start<=0;
	else if(flash_start<=5)
	    flash_start<=flash_start+1;
	else
		flash_start<=flash_start;
end

always @(posedge sys_clk or negedge sys_rst_n )begin
	if(!sys_rst_n)
		cmd_cnt<=0;
	else if(flash_start==4)
	    spi_start<=1'b1;
	else if(idel_flag_r&&cmd_cnt<10)begin
	    cmd_cnt<=cmd_cnt+1;
		spi_start<=1'b1;
	end
	else begin
		cmd_cnt<=cmd_cnt;
		spi_start<=1'b0;
	end
end

always @(posedge sys_clk or negedge sys_rst_n )begin
	if(!sys_rst_n)
		spi_data<=8'd0;
	else if(w_data_req)
		spi_data<=spi_data+1'b1;
	else
		spi_data<=spi_data;
end

always @(*)begin
	case(cmd_cnt)
		0:spi_cmd=WEL_CMD;
		1:spi_cmd=C_ERA_CMD;
		2:spi_cmd=R_STA_REG_CMD;
		3:spi_cmd=WEL_CMD;
		4:spi_cmd=WRITE_CMD;
		5:spi_cmd=R_STA_REG_CMD;
		6:spi_cmd=READ_CMD;
		7:spi_cmd=WEL_CMD;
		8:spi_cmd=S_ERA_CMD;
		9:spi_cmd=R_STA_REG_CMD;
		10:spi_cmd=READ_CMD;
		
	default:;
	endcase
end

endmodule

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1252490.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

TI 毫米波雷达开发系列之mmWave Studio 和 Visuiallizer 的异同点雷达影响因素分析

TI 毫米波雷达开发之mmWave Studio 和 Visuiallizer 的异同点 引入整个雷达系统研究的目标分析影响这个目标的因素硬件影响因素 —— 雷达系统的硬件结构&#xff08;主要是雷达收发机&#xff09;AWR1642芯片硬件系统组成MSS 和 DSS 概述MSS 和 DSS 分工BSS的分工AWR1642 组成…

crontab计划任务

银河麒麟v10服务器版和桌面版执行周期计划任务分为两类&#xff1a;系统任务调度和用户任务调度。系统任务是由 cron (crond) 这个系统服务来控制的&#xff0c;这个系统服务是默认启动的&#xff0c;通过vim /etc/crontab执行。用户自己设置的计划任务则使用crontab 命令 配置…

Everything进行内网穿透搜索

文章目录 1\. 部署内网穿透1.1. 注册账号1.2. 登录1.3. 创建隧道 2\. 从外网访问Everything 借助cpolar可以让我们在公网上访问到本地的电脑 1. 部署内网穿透 1.1. 注册账号 在使用之前需要先进行注册cpolar cpolar secure introspectable tunnels to localhost 1.2. 登录 C…

【Web】[GKCTF 2021]easycms

直接点击登录按钮没有反应 扫目录扫出来/admin.php 访问 弱口令admin 12345直接登录成功 点开设计--主题--自定义 编辑页头&#xff0c;类型选择php源代码 点保存显示权限不够 设计--组件--素材库 先随便上传一个文件&#xff0c;之后改文件名称为../../../../../system/tmp…

计算机应用基础_错题集_PPT演示文稿_操作题_计算机多媒体技术操作题_文字处理操作题---网络教育统考工作笔记007

PPT演示文稿操作题 提示:PPT部分操作题 将第2~第4张幻灯片背景效果设为渐变预置的“雨后初晴”效果(2)设置幻灯片放映方式

卷积神经网络(Inception-ResNet-v2)交通标志识别

文章目录 一、前言二、前期工作1. 设置GPU&#xff08;如果使用的是CPU可以忽略这步&#xff09;2. 导入数据3. 查看数据 二、构建一个tf.data.Dataset1.加载数据2. 配置数据集 三、构建Inception-ResNet-v2网络1.自己搭建2.官方模型 五、设置动态学习率六、训练模型七、模型评…

【小沐学写作】免费在线AI辅助写作汇总

文章目录 1、简介2、文涌Effidit&#xff08;腾讯&#xff09;2.1 工具简介2.2 工具功能2.3 工具体验 3、PPT小助手&#xff08;officeplus&#xff09;3.1 工具简介3.2 使用费用3.3 工具体验 4、DeepL Write&#xff08;仅英文&#xff09;4.1 工具简介4.2 工具体验 5、天工AI…

数组题目:645. 错误的集合、 697. 数组的度、 448. 找到所有数组中消失的数字、442. 数组中重复的数据 、41. 缺失的第一个正数

645. 错误的集合 思路&#xff1a; 我们定义一个数组cnt&#xff0c;记录每个数出现的次数。然后我们遍历数组&#xff0c;从1开始&#xff0c;如果cnt[i] 0 那就说明这个是错误的数&#xff0c;如果 cnt[i] 2&#xff0c;那就说明是重复的数。 代码&#xff1a; class So…

嵌入式虚拟机原理

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和技术。关…

【数据集】全网最全的常见已公开医学影像数据集

目录 一&#xff0c;极市医学数据集汇总 1.CT 医学图像 ​编辑 2.恶性与良性皮肤癌 3.白内障数据集 4.胸部 X 光图像&#xff08;肺炎&#xff09; 5.用于图像增强的内窥镜真实合成曝光过度和曝光不足帧 6.医学家 7.乳房组织病理学图像 8.皮肤癌 MNIST&#xff1a;HA…

芯片安全和无线电安全底层渗透技术

和传统网络安全不同&#xff0c;硬件安全、芯片安全、无线电安全属于网络底层安全的重要细分领域&#xff0c;是网络安全的真正基石&#xff0c;更是国家安全的重要组成部分&#xff0c;“夯实网络底层安全基础&#xff0c;筑牢网络强国安全底座”&#xff0c;是底网安全重要性…

上手 Promethus - 开源监控、报警工具包

名词解释 Promethus 是什么 开源的【系统监控和警报】工具包 专注于&#xff1a; 1&#xff09;可靠的实时监控 2&#xff09;收集时间序列数据 3&#xff09;提供强大的查询语言&#xff08;PromQL&#xff09;&#xff0c;用于分析这些数据 功能&#xff1a; 1&#xff0…

红外遥控实验

本章&#xff0c;我们将介绍 STM32F103 对红外遥控器的信号解码。STM32 板子上标配的红外接收 头和一个小巧的红外遥控器。我们将利用 STM32 的输入捕获功能&#xff0c;解码开发板标配的红外遥控 器的编码信号&#xff0c;并将编码后的键值在 LCD 模块中显示出来。 红外遥控技…

AI换脸教程

方法一、MJ换脸大法 1.点击这个网站添加一个机器人到自己的服务器 https://discord.com/oauth2/authorize?client_id1090660574196674713&permissions274877945856&scopebot 2. /saveid 回车选择你自己的照片&#xff0c;并且在名字框命名身份&#xff0c;回车 3.…

Cesium-terrain-builder编译入坑详解

本以为编译cesium-terrian-tools编译应该没那么难&#xff0c;不想问题重重&#xff0c;不想后人重蹈覆辙&#xff0c;也记录下点点滴滴。 目前网上存在的cesium代码版本主要有两个分支&#xff1a; 原始网站【不能生成layer文件&#xff0c;且经久不更新&#xff0c;使用gdal…

Kotlin学习——kt里面的函数,高阶函数 函数式编程 扩展函数和属性

Kotlin 是一门现代但已成熟的编程语言&#xff0c;旨在让开发人员更幸福快乐。 它简洁、安全、可与 Java 及其他语言互操作&#xff0c;并提供了多种方式在多个平台间复用代码&#xff0c;以实现高效编程。 https://play.kotlinlang.org/byExample/01_introduction/02_Functio…

【STM32】GPIO输出

1 GPIO简介 &#xff08;1&#xff09;GPIO&#xff08;General Purpose Input Output&#xff09;通用输入输出口 &#xff08;2&#xff09;可配置为8种输入输出模式 &#xff08;3&#xff09;引脚电平&#xff1a;0V~3.3V&#xff0c;部分引脚可容忍5V&#xff08;可以输…

mysql8下载与安装教程

文章目录 1. MySQL下载2. MySQL安装3. 添加环境变量4. 登录mysql 1. MySQL下载 以下两个网址二选一 官网&#xff1a;https://downloads.mysql.com/archives/community/阿里云镜像&#xff1a;https://mirrors.aliyun.com/mysql/?spma2c6h.13651104.d-5173.5.2e535dc8shSjIl…

centos7搭建ftp服务

一、安装 yum -y install vsftpd vi /etc/vsftpd/vsftpd.conf二、编辑配置文件 /etc/vsftpd/vsftpd.conf 内容如下 #是否允许匿名&#xff0c;默认no anonymous_enableNO#这个设定值必须要为YES 时&#xff0c;在/etc/passwd内的账号才能以实体用户的方式登入我们的vsftpd主机…

【Java程序员面试专栏 专业技能篇 】Java SE核心面试指引(四):Java新特性

关于Java SE部分的核心知识进行一网打尽,包括四部分:基础知识考察、面向对象思想、核心机制策略、Java新特性,通过一篇文章串联面试重点,并且帮助加强日常基础知识的理解,全局思维导图如下所示 本篇Blog为第四部分:Java新特性,子节点表示追问或同级提问 Java8新特性…