机器学习-线性模型·

news2024/11/19 14:26:03

线性模型是一类用于建模输入特征与输出之间线性关系的统计模型。这类模型的基本形式可以表示为:

y = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_n x_n

其中:
 y是模型的输出(目标变量)。
w_0 是截距(常数项,表示在所有输入特征都为零时的输出值)。
w_1, w_2, \ldots, w_n 是权重,表示每个特征对输出的影响程度。
x_1, x_2, \ldots, x_n 是输入特征。

线性模型的任务是学习适当的权重w_1, w_2, \ldots, w_n ,以最好地拟合训练数据,并对未见过的数据做出准确的预测。线性模型在不同领域中有广泛的应用,包括回归问题和分类问题。

线性模型的训练通常涉及到一个优化问题,目标是最小化损失函数。损失函数可以是均方误差(对于回归问题)交叉熵等(对于分类问题)。优化算法(例如梯度下降)被用于调整权重,使得损失函数达到最小值。

不同类型的线性模型包括:
1. 线性回归(Linear Regression): 用于连续目标变量的预测。
2. 逻辑回归(Logistic Regression):用于二分类问题,输出是概率值。

                            (1) 二分类的线性模型
3. 多项式回归(Polynomial Regression): 扩展线性回归,允许特征的多项式组合。
4. 岭回归(Ridge Regression)和Lasso回归(Lasso Regression): 用于处理特征共线性和过拟合。
5. 支持向量机(Support Vector Machines,SVM): 可用于线性和非线性分类问题。

线性模型的优势在于简单且易于解释,但对于复杂的非线性关系可能表现不佳。在实际应用中,特别是在深度学习等领域的崛起后,线性模型通常被更复杂的模型取代。

示例代码:

# 导入必要的库
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt

# 生成示例数据
np.random.seed(42)
# 生成包含随机噪声的输入特征 X 和目标输出 y
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

# 划分数据集
# 将数据集划分为训练集和测试集,80% 用于训练,20% 用于测试
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建并训练线性回归模型
# 创建线性回归模型的实例
model = LinearRegression()
# 使用训练数据对模型进行训练
model.fit(X_train, y_train)

# 在测试集上进行预测
# 使用训练好的模型对测试集进行预测
y_pred = model.predict(X_test)

# 评估模型性能
# 计算预测值与真实值之间的均方误差
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')

# 可视化结果
# 绘制散点图表示真实值,并绘制回归线表示模型的预测
plt.scatter(X_test, y_test, color='black')
plt.plot(X_test, y_pred, color='blue', linewidth=3)
plt.xlabel('X')
plt.ylabel('y')
plt.title('Linear Regression Example')
plt.show()

 结果:

理解线性模型的关键点包括以下几个方面:

1. 基本形式:线性模型的基本形式是通过线性组合表示输入特征和权重,加上一个截距项。这基本方程是模型的基础。

2. 权重和截距:模型中的权重和截距决定了特征对输出的影响程度。权重越大,对应特征对输出的影响越大。

3. 损失函数:训练线性模型通常涉及到定义和优化一个损失函数,目标是使预测值与真实值之间的误差最小化。均方误差是线性回归中常用的损失函数。

4. 优化算法:通过使用梯度下降等优化算法,模型的权重和截距可以被调整,以最小化损失函数。这是模型训练的关键步骤。

5. 适用领域:线性模型在回归和分类问题中广泛应用。线性回归用于预测连续数值,而逻辑回归用于二分类问题。

6. 特殊情况岭回归和Lasso回归是线性模型的变体,用于处理共线性和过拟合问题。它们通过引入正则化项来限制模型参数的大小。

7. 局限性:线性模型的局限性在于它们无法捕捉复杂的非线性关系。在处理非线性问题时,可能需要考虑其他更复杂的模型。

8. 解释性线性模型具有较强的解释性,可以通过权重的大小和符号解释特征对输出的影响。这使得在一些应用场景中,如金融和医疗领域,线性模型仍然是有用的。

总体而言,线性模型是机器学习中一个重要的基础概念,理解线性模型有助于深入理解机器学习的核心原理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1252436.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Yakit工具篇:WebFuzzer模块之热加载技术

简介 官方定义: 什么是热加载? 广义上来说,热加载是一种允许在不停止或重启应用程序的情况下,动态加载或更新特定组件或模块的功能。这种技术常用于开发过程中,提高开发效率和用户体验。 在Yakit 的Web Fuzzer中&…

PTA NeuDs_数据库题目

二.单选题 1.数据库应用程序的编写是基于数据库三级模式中的。 A.模式 B.外模式 C.内模式 D.逻辑模式 用户应用程序根据外模式进行数据操作,通过外模式一模式映射,定义和建立某个外模式与模式间的对应关系 2.对创建数据库模式一类的数据库对象的授权…

Python基础语法之判断语句

1.布尔类型和比较运算符 布尔类型&#xff1a;数字类型的一种。 比较运算符&#xff1a; > < > < ! 2.if语句基本格式 if 要判断的条件&#xff1a; 条件成立&#xff0c;即做~ 例子&#xff1a; 注意&#xff1a;格式上冒号和缩进 3.if else组合…

docker devicemapper: Error running DeleteDevice dm_task_run failed

docker 删除容器&#xff0c;遇到&#xff1a; devicemapper: Error running DeleteDevice dm_task_run failed 异常 [hadoophadoop02 ~]$ sudo docker rm 5ede1280f0bf Error response from daemon: container 5ede1280f0bf791e91d40038b15decd42e8923546ae578abd96e08114c76…

Linux 基础-常用的命令和搭建 Java 部署环境

文章目录 目录相关查看目录中的内容查看目录当前的完整路径切换目录 文件相关创建文件查看文件内容写文件vim 基础 创建删除创建目录 移动和复制移动(剪切粘贴)复制(复制粘贴) 搭建 Java 部署环境1. 安装 jdk2. 安装 tomcat1). 我们在自己电脑上下好 tomcat2). 从官网下载的 .z…

2023年【安全员-C证】考试试卷及安全员-C证试题及解析

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 安全员-C证考试试卷是安全生产模拟考试一点通生成的&#xff0c;安全员-C证证模拟考试题库是根据安全员-C证最新版教材汇编出安全员-C证仿真模拟考试。2023年【安全员-C证】考试试卷及安全员-C证试题及解析 1、【多选…

【Java SE】 带你走近Java的抽象类与接口

&#x1f339;&#x1f339;&#x1f339;【JavaSE】专栏&#x1f339;&#x1f339;&#x1f339; &#x1f339;&#x1f339;&#x1f339;个人主页&#x1f339;&#x1f339;&#x1f339; &#x1f339;&#x1f339;&#x1f339;上一篇文章&#x1f339;&#x1f339;&…

【小沐学写作】原型设计工具汇总(Axure RP)

文章目录 1、简介2、Axure RP2.1 工具简介2.2 工具特点2.2.1 互动事件2.2.2 条件逻辑2.2.4 工作表格2.2.5 多状态容器2.2.6 数据驱动接口2.2.7 自适应视图2.2.8 流程图 2.3 工具安装2.3.1 安装2.3.2 运行 2.4 使用费用2.5 工具体验2.5.1 登陆框制作 3、其他3.1 Figma3.2 Adobe …

如何避免死锁

程序员的公众号&#xff1a;源1024&#xff0c;获取更多资料&#xff0c;无加密无套路&#xff01; 最近整理了一波电子书籍资料&#xff0c;包含《Effective Java中文版 第2版》《深入JAVA虚拟机》&#xff0c;《重构改善既有代码设计》&#xff0c;《MySQL高性能-第3版》&…

【设计模式-2.1】创建型——单例模式

说明&#xff1a;设计模式根据用途分为创建型、结构性和行为型。创建型模式主要用于描述如何创建对象&#xff0c;本文介绍创建型中的单例模式。 饿汉式单例 单例模式是比较常见的一种设计模式&#xff0c;旨在确保对象的唯一性&#xff0c;什么时候去使用这个对象都是同一个…

Vue19 列表过滤

直接上代码 以下代码使用了两种实现方式&#xff0c;监视属性和计算属性 当能用计算属性实现时&#xff0c;推荐使用计算属性 <!DOCTYPE html> <html><head><meta charset"UTF-8" /><title>列表过滤</title><script type&q…

xadmin后台在每一行记录增加一个复制链接按钮

xadmin后台在每一行记录增加一个复制链接按钮 1、效果 点击复制后,自动把url链接复制到粘贴板,按Ctrl+v即可显示复制内容。 2、实现代码 adminx.py # 用户管理 class UserWhiteListAdmin(object):search_fields = [name, mobile] # 检索字段list_display

【Flutter】设置顶部状态栏的显示、隐藏、半透明灰色显示

【Flutter】设置顶部状态栏的显示、隐藏、半透明灰色显示 设置方法&#xff1a; // 这种模式不现实状态栏 SystemChrome.setEnabledSystemUIMode(SystemUiMode.immersiveSticky); // 这种模式显示状态栏 SystemChrome.setEnabledSystemUIMode(SystemUiMode.edgeToEdge); // 修…

【C指针(五)】6种转移表实现整合longjmp()/setjmp()函数和qsort函数详解分析模拟实现

&#x1f308;write in front :&#x1f50d;个人主页 &#xff1a; 啊森要自信的主页 ✏️真正相信奇迹的家伙&#xff0c;本身和奇迹一样了不起啊&#xff01; 欢迎大家关注&#x1f50d;点赞&#x1f44d;收藏⭐️留言&#x1f4dd;>希望看完我的文章对你有小小的帮助&am…

2023 hnust 湖南科技大学 信息安全管理课程 期中考试 复习资料

前言 ※老师没画重点的补充内容★往年试卷中多次出现或老师提过的&#xff0c;很可能考该笔记是奔着及格线去的&#xff0c;不是奔着90由于没有听过课&#xff0c;部分知识点不一定全&#xff0c;答案不一定完全正确 题型 试卷有很多题是原题&#xff0c;分值是猜测的 判断题…

STM32 CAN协议讲解以及代码

STM32 CAN 文章目录 STM32 CAN前言一、CAN外设1.主控制寄存器CAN_MCR2.位时序寄存器CAN_BTR3.CAN的发送邮箱4.CAN的接收FIFO5.验收筛选器 二、代码配置1.初始化2.发送数据3.接收数据4.main.c 前言 前面学习了CAN的一些理论知识&#xff0c;他在我们的STM32里面是怎么用的呢 前…

JavaSE 知识点总结

路在脚下&#xff0c;行则将至 目录 1. 初始Java 1.1 Java之父——高斯林 1.2 一次编译&#xff0c;到处运行 1.3 注释 2. 数据结构与变量 2.1 数据类型 2.2 变量 2.3 常量 3. 运算符 3.1 逻辑与 && 3.2 逻辑 || 3.3 逻辑非 ! 3.4 特殊的位运算符(C语言没有)…

报表生成器Stimulsoft用户手册:具有交叉基元的报告

Stimulsoft Reports 是一款报告编写器&#xff0c;主要用于在桌面和Web上从头开始创建任何复杂的报告。可以在大多数平台上轻松实现部署&#xff0c;如ASP.NET, WinForms, .NET Core, JavaScript, WPF, Angular, Blazor, PHP, Java等&#xff0c;在你的应用程序中嵌入报告设计器…

E5052A/安捷伦Agilent E5052A信号源分析仪

181/2461/8938产品概述 是德科技E5052A(安捷伦)信号源分析仪&#xff0c;10 MHz至7 GHz&#xff0c;具有许多增强的性能特征。在表征VCO或其它类型的高频信号源、aw以及高速数据通信系统中的时钟抖动评估方面&#xff0c;它提供了世界上最高的测量吞吐量和最佳可用性。 是德科…

elementPlus之home页面布局

可以根据自己喜欢的格式选择 现在 header 部分 Aside 部分 Main部分 加上背景色以及命名 <template><div class="common-layout"><el-container><el-header class="homeHeader"><div class="headerTitle">Dev…