基于鱼鹰算法优化概率神经网络PNN的分类预测 - 附代码

news2024/11/17 4:30:27

基于鱼鹰算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于鱼鹰算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于鱼鹰优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用鱼鹰算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于鱼鹰优化的PNN网络

鱼鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/130542706

利用鱼鹰算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

鱼鹰参数设置如下:

%% 鱼鹰参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,鱼鹰-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1251616.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

程序的编译与链接(详解)

程序的编译与链接 本章内容如下: 1:程序的翻译环境与执行环境的介绍 2:详解程序的翻译环境(编译链接) 2.1预处理阶段干了啥2.2编译阶段干了啥2.3汇编阶段干了啥2.4链接阶段干了啥 3:预处理详解 预定义符号的介绍#define 的介绍(宏与标识符号)#与##的介绍宏与函数…

对象的内部结构

在HotSpot 虚拟机里,对象在堆内存中的存储布局可以划分为三个部分:对象头( Header )、实例数据(Instance Data )和对齐填充( Padding )。 对象头 Mark Word(标记字段&a…

RK3568驱动指南|第八篇 设备树插件-第72章 设备树插件语法和编译实验

瑞芯微RK3568芯片是一款定位中高端的通用型SOC,采用22nm制程工艺,搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码,支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU,可用于轻量级人工…

[element-ui] el-dialog 中的内容没有预先加载,因此无法获得内部元素的ref 的解决方案

问题描述 在没有进行任何操作的时候,使用 this.$refs.xxxx 无法获取el-dialog中的内部元素,这个问题会导致很多bug. 官方解释,在open事件回调中进行,但是open()是弹窗打开时候的会调,有可能在此处获取的时候&#xff…

教师授课技巧

一名教师,授课技巧是提高教学效率和质量的关键。以下是几个实用的授课技巧,可以帮你更好的传授知识,激发学习兴趣。 一、做好课前准备 课前准备是授课技巧的重要环节。认真备课,熟悉教材内容,制定教学计划&#xff0c…

redis运维(二十一)redis 的扩展应用 lua(三)

一 redis 的扩展应用 lua redis加载lua脚本文件 ① 调试lua脚本 redis-cli 通过管道 --pipe 快速导入数据到redis中 ② 预加载方式 1、错误方式 2、正确方式 "案例讲解" ③ 一次性加载 执行命令: redis-cli -a 密码 --eval Lua脚本路径 key …

【Docker】Docker与Kubernetes:区别与优势对比

前言 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux或Windows操作系统的机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。   kubernetes,简称K8s&a…

MybatisPlus集成baomidou-dynamic,多数据源配置使用、MybatisPlus分页分组等操作示例

文章目录 pom配置示例代码 pom <dependencies><!--mybatisPlus集成SpringBoot起步依赖--><dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.4.2</version>&l…

荆涛演唱歌曲《老板的孤独》:孤独中的坚韧与担当

歌手荆涛演唱的《老板的孤独》不仅是一首歌&#xff0c;更是一种情感的宣泄和表达。歌曲中表达了老板们在面对压力、孤独和困难时&#xff0c;依然坚持、积极向前的坚韧精神。每一句歌词都充满了对生活的深刻理解和感悟&#xff0c;以及对团队、家人的深深牵挂。 一、欣喜时要h…

【Netty专题】Netty调优及网络编程中一些问题补充(面向面试学习)

目录 前言阅读对象阅读导航笔记正文一、如何选择序列化框架1.1 基本介绍1.2 在网络编程中如何选择序列化框架1.3 常用Java序列化框架比较 二、Netty调优2.1 CONNECT_TIMEOUT_MILLIS&#xff1a;客户端连接时间2.2 SO_BACKLOG&#xff1a;最大同时连接数2.3 TCP_NODELAY&#xf…

spring-framework-5.2.25.RELEASE源码环境搭建

环境准备 spring-framework-5.2.25.RELEASEIntelliJ IDEA 2022.3.1java version “11.0.20” 2023-07-18 LTSGradle 5.6.4java version “1.8.0_301” 下载spring-framework-5.2.25.RELEASE源码 git clone https://gitee.com/QQ952051088/spring.git cd spring gradlew buil…

车载通信架构 —— 传统车内通信网络FlexRay(较高速度高容错、较灵活拓扑结构)

车载通信架构 —— 传统车内通信网络FlexRay(较高速度高容错、较灵活拓扑结构) 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,…

Mysql 解决Invalid default value for ‘created_at‘

在mysql版本 8.0 和 5.* 之间数据互导的过程中&#xff0c;老是会出现各种错误&#xff0c;比如 这个created_at 一定要有一个默认值&#xff0c; 但是我加了 default null 还是会报错&#xff0c;于是对照了其他的DDL 发现&#xff0c;需要再加 null default null 才行&#…

Element-UI Upload 手动上传文件的实现与优化

文章目录 引言第一部分&#xff1a;Element-UI Upload 基本用法1.1 安装 Element-UI1.2 使用 <el-upload> 组件 第二部分&#xff1a;手动上传文件2.1 手动触发上传2.2 手动上传时的文件处理 第三部分&#xff1a;性能优化3.1 并发上传3.2 文件上传限制 结语 &#x1f38…

软件测试 | 解决‘pip‘ 不是内部或外部命令,也不是可运行的程序或批处理文件

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

车载通信架构 —— 传统车内通信网络LIN总线(低成本覆盖低速场景)

车载通信架构 —— 传统车内通信网络LIN总线(低成本覆盖低速场景) 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是…

前缀和+哈希表——974. 和可被 K 整除的子数组

文章目录 &#x1fa81;1. 题目&#x1f3a3;2. 算法原理&#x1fa84;解法一&#xff1a;暴力枚举&#x1fa84;解法二&#xff1a;前缀和 哈希表 ⛳3. 代码实现 &#x1fa81;1. 题目 题目链接&#xff1a;974. 和可被 K 整除的子数组 - 力扣&#xff08;LeetCode&#xff0…

【室内定位系统源码】UWB超宽带定位技术的特点和应用前景

uwb人员、物品定位系统源码&#xff0c;智慧工厂人员安全管理定位&#xff0c;高精度定位系统源码 UWB超宽带定位技术概念&#xff1a; 超宽带无线通信技术&#xff08;UWB&#xff09;是一种无载波通信技术&#xff0c;UWB不使用载波&#xff0c;而是使用短的能量脉冲序…

QEMU Guest Agent本地提权漏洞处理(CVE-2023-0664)

一、漏洞描述 QEMU Guest Agent&#xff08;qga&#xff09;类似于vmware中的 vmtools&#xff0c;相关安全报告显示它的Windows版本安装程序存在本地提权高危漏洞&#xff08;CVE-2023-0664&#xff09;&#xff0c;攻击者可利用该漏洞进行本地权限提升&#xff0c;获得SYSTE…

【图数据库实战】图数据库基本概念

1、图数据库的概念 维基百科图书库的概念&#xff1a; 在计算机科学中&#xff0c;图数据库&#xff08;英语&#xff1a;graph database&#xff0c;GDB&#xff09;是一个使用图结构进行语义查询的数据库&#xff0c;它使用节点、边和属性来表示和存储数据。该系统的关键概念…