中国信通院王蕴韬:从“好用”到“高效”,AIGC需要被再次颠覆

news2024/12/29 8:48:51

当下AIGC又有了怎样的颠覆式技术?处于一个怎样的发展阶段?产业应用如何?以及存在哪些风险?针对这些问题,我们与中国信通院云计算与大数据研究所副总工程师王蕴韬进行了一次深度对话,从他哪里找到了这些问题的答案。

2022年11月30日,ChatGPT正式面向全球发布,AIGC浪潮由此席卷而来。

实际上,AIGC技术由来已久。

1957年,Lejaren Hiller和Leonard Isaacson通过将计算机程序中的控制变量改为音符,用计算机创作了音乐作品《Illiac Suite》。

2014年,美国《洛杉矶时报》记者Ken Schwencke通过编写的算法程序,仅用3分钟就完成了当时洛杉矶发生的一场4.4级地震的新闻报道。

那么,当下AIGC又有了怎样的颠覆式技术?处于一个怎样的发展阶段?产业应用如何?以及存在哪些风险?

针对这些问题,我们与中国信通院云计算与大数据研究所副总工程师王蕴韬进行了一次深度对话,从他哪里找到了这些问题的答案。

大模型,再次唤醒AIGC

“和传统基于深度学习技术的AIGC相比,以GPT为代表的生成式大模型在去年年底的出现,直接将AIGC内容质量和好用程度提升到了一个新高度,AIGC这把火由此也再次被点燃。”这是王蕴韬看到的行业变化。

大模型的出现,对各个行业都带来了不可忽视的影响,AIGC产业也不例外。

这其中AIGC的“C”,不仅仅是指OpenAI的ChatGPT带火的“chatbot”中的文本内容,还包括诸如图片、视频、代码等内容形式。

尤其过往十年人工智能技术的快速发展,让人工智能技术在诸如图像/视频修复、低代码等领域有了一定的应用,大模型的到来才能进一步对这些产业形成一次颠覆。

关于这次对于人工智能的技术颠覆,王蕴韬将其中的直观感受总结为“可用”到“好用”。

对此,他进一步指出:

因为人工智能技术路线一直是在仿人类的神经元功能演进的,在这之中,我们经历了“低仿”到“高仿”的发展阶段。

此前基于深度学习的人工智能,是通过CNN、RNN网络,先是做一个线性变换,再经过一个激活函数,从而实现“低仿”人类神经元的算法模型。

现在再度火起来的AIGC背后的根技术是Transformer,有点类似编码器和解码器,通过将编码和解码放在一起,从而同时吸收更长的字符串(token)来做相关的任务处理。

从深度学习到现在的大模型,我们用的依然是广义上的深度神经网络,只不过这个深度神经网络基本单元发生了变化。

大模型的出现,改变了构成AIGC的基本单元,让AIGC从“可用”跨越到了“好用”阶段。

AIGC造“血”,行业内容涌现

2023年是大模型的战场,在这个战场上,悄悄进行了两场军备竞赛。

第一场是关于通用大模型,包括国外的微软、谷歌、亚马逊,以及国内的BAT等科技巨头,都加入到了这场竞赛中。

他们通过引入规模庞大的公开数据集、通过预训练,形成了通用大语言模型。

王蕴韬称,这个通用大语言模型,实现了大模型从0到1的构建,但实际上是“0.5版大模型”。

之后在行业大模型的竞赛中,真正适合深入到应用阶段的大模型才开始出现。

关于后者,王蕴韬称,大家主要是基于“0.5版大模型”在微调,通过不断灌输行业知识,增加与人类专家的交互,从而将“0.5版大模型”调试得更加好用。

经此“历练”,AIGC最终有机会进一步深入到各个行业,为各行各业造“血”。

“所有行业都需要生产内容,实际上,如今的AIGC已经在金融、电商、影视、传媒等领域开始被规模应用。”

以影视和传媒领域为例,这一领域各类机构和企业的核心竞争力就是提供内容,这些机构如果能够通过AIGC低成本高质量生产内容,必然会形成一次产业颠覆。因此,我们能够看到,现在影视行业已经在用AIGC进行后期制作,例如AI换脸就是已经被大家熟知的热门应用。

再如在电商领域,其中的直播带货、客服咨询等环节所需要内容服务都是AIGC最擅长的,而AIGC在电商内容生成上已经达到了非常理想的效果,尤其是人类很难实现的诸如直播带货中的24小时不间断货品推荐,已经在通过AIGC来实现。

据王蕴韬的观察,“实际上,在教育、工业、医疗、法律、农业、设计、软件,软件编写上,AIGC也确实已经遍地开花。”

大模型评估标准难题

AIGC及其背后大模型的到来带来的另一个难题是,如何建立起一套全新的评判标准。

在此之前,AI模型和算法经过几十年的发展,已经形成了一套成熟的评判标准,不过王蕴韬告诉我们,这套标准并不适用于现在的AIGC和大模型。

此前学术界会先搭建一个评测数据集,通过将这个数据集放到不同模型中并对比输出结果,以及与相对原有数据集的差异,从而判断AI模型的能力,诸如斯坦福等高校都是这方面权威评测机构。

然而,“这样的评测方法仅适用于原来判别式的AI模型,无法对现在生成式AI有一个很好的评测效果。”

从目前来看,国内对于大模型和AIGC一些场景应用的评测及标准,尚且处于探讨和研究阶段,据王蕴韬透露,“信通院专门针对大模型和AIGC的评测评估标准做了不少探索性工作,但目前这些标准主要还是围绕功能性指标,包括一个AIGC应用全生命周期实现哪些功能,这一块我们已经梳理出来了。”

但是针对AIGC背后大模型的性能有怎样的突破,这仍是一个行业难题。

“大模型每次生成的东西都会有明显的差异,如何判断每次输出都不一样的开放性输出和预想的输出的契合度有多少,这是目前评测最难实现的点。”

王蕴韬表示,“目前我们只能通过主观评价指标才能确定大模型究竟在性能上有多少提升,而针对相似度评估,整个产业界依旧非常欠缺。”

除此以外,王蕴韬还特别指出,如何让大模型可管、可控,安全地工作,同样是现在亟需解决的一个问题。

尤其是对于实时性、安全可控有高要求的行业和场景,现在尚且难以很好地应用AI大模型,“因为你完全无法预料大模型会输出怎样的结果。”

实际上,早在2021年,大模型刚刚兴起时,产学研各界就已经注意到了人工智能的安全可信,“我们当时做出过一个判断:人工智能已经进入到产业发展和治理重要度相同的新阶段。”

“原来大家都只是盯着产业发展,只踩油门,不踩刹车,现在来看,因为它在赋能垂直行业过程中会产生很多伦理相关的问题,确实已经进入到了一个新阶段。”

正因如此,在大模型进入对地域性、安全性较高的行业时,也出现了私有大模型这样独特的应用,尤其在数据安全越来越被重视的当下,私有大模型也成了通用大模型、行业大模型之外,一个更具时代特色的大模型。

现在全球对于到底什么样的AI是合乎科技伦理的、是可信的已经基本达成一定的共识,但是现在需要将这些宏观的、抽象的要求转化为企业真正在开发产品时落实的一个准则。

AIGC需要被再次颠覆

大模型带来的技术颠覆,为人工智能技术创新带来了新的范式,但第一波赚到钱的,依然是“卖铲子的人”。

王蕴韬表示,“通过堆算力的方式‘堆出来’的大模型效果已经很不错,但从商业角度来看,训练成本和推理成本之高,消耗电量和算力之大是难以想象的。因而,现阶段大模型解决的问题带来的效益远比它的成本投入要低。”

王蕴韬认为,针对大模型的商业化,接下来还需要供需方朝着两个方向发力:

第一,从供给侧来看,现在的大模型还有进一步压缩成本、提高性价比的空间。

大家已经意识到了以Transformer为代表的根技术还存在很大的问题,例如每增加一个token,它需要的算力是呈指数级增长的,对于由此带来的成本,同样如此。因此,从供给侧来看,目前仍然有很大的提升空间。

第二,从使用侧来看,现在AIGC做得最好的往往是企业自身数字化转型程度很高的,提升自身数字化程度也就成了企业高效应用AIGC的一个必然前提。

如果想要在更广泛的领域去应用AIGC技术,我们就需要这些领域在自己的数字化方面有更好的基础建设,这个基础的提升同样需要大量的资金、人力和时间的投入,先拥有更高数字化建设基础的企业和行业,也将先受益于AIGC技术红利。

而谈到当下大模型的技术路径,王蕴韬也特别指出,现在已经有高校和机构意识到了商业化的问题,开始思考区别于Transformer的新的技术路线。

他指出,“从‘好用’到‘高效’,AIGC在未来也许会再经历一次或多次技术范式的颠覆。” 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1251046.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

crontab 定时检测 Tomcat 状态脚本实现及注意事项

背景 Jenkins 所在的 Tomcat 总是莫名挂掉,虽然任务配置了 NOKILLME 参数,而且并不是总是发生在编译完成后才挂的。怀疑是机器资源不足导致的,没有依据。最简单的办法是创建一个定时任务,检测 Tomcat 状态,不见了就拉…

我的崩溃。。想鼠??!

身为程序员哪一个瞬间让你最奔溃? 某天一个下午崩溃产生。。。 一个让我最奔溃的瞬间是关于一个看似无害的拼写错误。我当时正在为一个电子商务网站添加支付功能,使用了一个第三方支付库。所有的配置看起来都正确,代码也没有报错,…

prometheus|云原生|grafana-9.4.3版本的主题更改

一, grafana-9.4.3版本的主题更改 grafana-9.4.3版本应该是目前比较高的版本了,但不知道是什么原因,grafana的主题界面并不多,只有暗色,亮色和系统色三种 配置管理----首选项里可以看到 亮色: 暗色&…

网络层(IP协议)

文章目录 网络层IP协议IP协议报头32位源IP地址和目的IP地址:为了解决IP地址不够用的情况 IP地址管理子网掩码特殊IP 路由选择(简介) 网络层 网络层主要负责地址管理和路由选择.代表协议就是IP协议. IP协议 IP协议报头 4位版本: 4: 表示IPv4 ; 6: 表示IPv6 4位首部长度: 描述…

vscode导入STM32CubeIDE工程文件夹未定义警告清除方法

0 前言 在我们使用vscode去编辑STM32CubeIDE的工程文件时,经常会出现一些类型未定义、头文件路径无效的问题,无法正常使用且非常影响观感。本文介绍如何设置vscode导入的STM32CubeIDE配置文件,解决这一问题。 1 vscode导入STM32CubeIDE工程…

如何设置图像的尺寸大小?用它提高效率100%

调整图片像素和大小是一种常见的图像处理操作,可以根据需要改变图片的宽度和高度,在许多场景中都很有用,如网页设计、图像制作、打印和展示等,想要准确的对图片尺寸修改就需要用到专业的修改图片大小工具,下面就详细介…

今年的校招薪资真的让人咋舌!

秋招接近尾声,各大公司基本也陆续开奖了。这里整理了部分公司的薪资情况,数据来源于 OfferShow 和牛客网。 ps:爆料薪资的几乎都是 211 和 985 的,并不是刻意只选取学校好的。另外,无法保证数据的严格准确性。 淘天 …

MYSQL基础知识之【数据类型】

文章目录 前言标题一数值类型日期和时间类型字符串类型后言 前言 hello world欢迎来到前端的新世界 😜当前文章系列专栏:Mysql 🐱‍👓博主在前端领域还有很多知识和技术需要掌握,正在不断努力填补技术短板。(如果出现错…

基于IDEA+MySQL+SSM开发的证券交易结算系统

基于SSM的证券交易结算系统 项目介绍💁🏻 网上交易克服了传统现场交易的弊端,用户通过网上交易可以随时、随地进行交易;同时,网上交易具有速度快、透明度高、成本低、安全性高等优点,与传统的基于营业部的证…

tinyViT论文笔记

论文:https://arxiv.org/abs/2207.10666 GitHub:https://github.com/microsoft/Cream/tree/main/TinyViT 摘要 在计算机视觉任务中,视觉ViT由于其优秀的模型能力已经引起了极大关注。但是,由于大多数ViT模型的参数量巨大&#x…

基于人工蜂鸟算法优化概率神经网络PNN的分类预测 - 附代码

基于人工蜂鸟算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于人工蜂鸟算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于人工蜂鸟优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

力软vue前端开发:使用params跳转传参404问题解决

问题描述 this.$router.push({ name: page, query: { id: 001 } }) // 根据路由名称 query 的方式跳转传参 使用query传参时,参数会拼接在链接后,点击搜索条件链接参数也还在。用户需要重新进入搜索页面。 所以,使用nameparams进行传参。参…

快速压缩:迅速减小PDF文件大小的步骤与技巧

虽然png图片格式是一种无损压缩格式,但是png图片的内存大小也是比较大的,而且兼容性上也没有jpg图片好,许多平台推荐的也都是jpg格式,所以当我们需要把png转jpg格式的时候,就需要用到图片格式转换器,今天推…

sql查询优化实际案例

1、第一步:sql优化 正对于海量数据的查询优化,且外键关联比较多的情况,通常情况是下sql层面的优化,有些时候是由于sql不合理的编写导致,如尽量少使用sql内查询等 如:避免使用 left join (select * form …

代码随想录算法训练营第五十八天|739. 每日温度、496. 下一个更大元素 I

第十章 单调栈part01 739. 每日温度 给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer ,其中 answer[i] 是指对于第 i 天,下一个更高温度出现在几天后。如果气温在这之后都不会升高,请在该位置用…

数据结构与算法编程题21

判别两棵树是否相等。 #define _CRT_SECURE_NO_WARNINGS#include <iostream> using namespace std;typedef char ElemType; #define ERROR 0 #define OK 1typedef struct BiNode {ElemType data;BiNode* lchild, * rchild; }BiNode, * BiTree;bool Create_tree(BiTree&a…

斐讯K2结合Padavan实现锐捷认证破解方法

前言 众所周知&#xff0c;校园网在传统模式下是不能直接插路由使用的&#xff0c;但苦于校园网只能连接一台设备的烦恼&#xff0c;不得不“另辟蹊径”来寻求新的解决路径&#xff0c;这不&#xff0c;它来了&#xff0c;它来了&#xff0c;它带着希望走来了。 本文基于斐讯…

gobuster扫描工具使用教程(简单上手)

gobuster扫描工具使用教程 gobuster是干嘛用的? Gobuster是一个用于网络渗透测试的工具。它主要用于在Web应用程序中发现隐藏的内容或目录枚举&#xff0c;可以扫描子域名以及Web目录&#xff0c;寻找可能存在的漏洞。这个工具使用Go语言编写&#xff0c;具备优异的执行效率…

排序算法-----基数排序

目录 前言 基数排序 算法思想 ​编辑 算法示例 代码实现 1.队列queue.h 头文件 2.队列queue.c 源文件 3.主函数&#xff08;radix_sort实现&#xff09; 算法分析 前言 今天我想把前面未更新完的排序算法补充一下&#xff0c;也就是基数排序的一种&#xff0c;这是跟…

每日一题 1457. 二叉树中的伪回文路径(中等,DFS)

一句话&#xff0c;深度搜索所有路径&#xff0c;判断路径是否伪回文 # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right clas…