GPS 定位信息分析:航向角分析及经纬度坐标转局部XY坐标

news2025/1/11 0:51:52

GPS 定位信息分析(1)

从下面的数据可知,raw data 的提取和经纬度的计算应该是没问题的

在相同的经纬度下, x 和 y 还会发生变化,显然是不正确的

raw data:3150.93331124	11717.59467080	5.3
latitude: 31.8489	longitude: 117.293	heading_angle: 5.3
raw data:3150.93332581	11717.59468186	59.4
latitude: 31.8489	longitude: 117.293	heading_angle: 59.4
x: 0.0270035	y: 0.017412
---------
raw data:3150.93333013	11717.59468264	81.7
latitude: 31.8489	longitude: 117.293	heading_angle: 81.7
x: 0.03501	y: 0.01864
---------
raw data:3150.93333688	11717.59468779	77.2
latitude: 31.8489	longitude: 117.293	heading_angle: 77.2
x: 0.0475202	y: 0.0267478
---------
raw data:3150.93333483	11717.59468236	89.2
latitude: 31.8489	longitude: 117.293	heading_angle: 89.2
x: 0.0437208	y: 0.0181992
---------
raw data:3150.93334090	11717.59465670	337.7
latitude: 31.8489	longitude: 117.293	heading_angle: 337.7
x: 0.0549707	y: 0.022198
---------

调整输出后在 MATLAB 中处理显示

  • clockwise_pro.txt
  • anticlockwise_pro.txt
  • path_pro.txt

clockwise_pro 和 anticlockwise_pro 有助于分析航向角信息,path 参考意义不大

航向角信息分析

clockwise_pro 航向角信息

在这里插入图片描述

anticlockwise_pro 航向角信息

在这里插入图片描述

GPS 获取的是真北航迹方向,deg

Heading定向是指双天线接收机的主天线(ANT1)与从天线(ANT2)之间构成一个基线向量,确定此基线向量逆时针方向与真北的夹角

首先要明确基线向量与正北方向夹角的大小以及正负关系,分析如下,红色表示正北方向,蓝色表示基线向量,绿色表示航向角(真北航迹方向)

在这里插入图片描述
在这里插入图片描述

正北方向表示 0 度或 360 度位置,非负值,沿正北方向顺时针旋转是角度增加的方向

此时分析 clockwise_pro 和 anticlockwise_pro 的航向角变化结果就比较容易,示意图如下

在这里插入图片描述

以顺时针为例,起始位姿航向角 50 度,顺时针旋转至于正北方向重合,角度一直增大至 360 度

重合后继续顺时针旋转,此时会先从 360 度突变至 0 度,再继续增加

问题分析

1、由于手动安装主从天线,基线向量本身存在夹角,导致航向角始终存在偏差

下图能够说明该问题

在这里插入图片描述

2、GPS 获得的航向角信息是在大地或者正北天坐标系下的,该信息并不可以使用,需要转换到局部坐标系下,涉及到坐标转换的问题

3、基线向量和主从天线有关,接收机 com1 口对应主天线,但仅靠线缆无法区分,本次也没有贴标签注明哪一根接前天线,哪一根接后天线,下次接线若与本次不同可能会有影响

轨迹信息分析

clockwise_pro 轨迹信息

在这里插入图片描述

anticlockwise_pro 轨迹信息

在这里插入图片描述

对于原地旋转而言经纬度信息保持不变,此时在 X 方向和 Y 方向还有如此大的位移,是有问题的


GPS 定位信息分析(2)

对于局部 XY 坐标信息的异常,从公式和编程两方面考虑

XY 坐标计算

公式部分应该没什么问题,主要由“根据经纬度计算两地之间的距离”推得

在这里插入图片描述

查找资料的过程中还发现“大地坐标系与空间直角坐标系的转换”,可以作为储备知识

在这里插入图片描述
在这里插入图片描述

以起始的 GPS 坐标为全局坐标系原点(init_pose),以当前纬度为 X轴,当前经度为 Y 轴

计算目标点 X 坐标时,假设纬度相同,根据经度差计算 X 坐标值

计算目标点 Y 坐标时,假设经度相同,根据纬度差计算 Y 坐标值

在这里插入图片描述

陆师兄 gps_path.cpp 中的代码如下,感觉存在一些问题

//初始化
    if(!init)
    {
        init_pose.latitude = gps_msg_ptr->latitude;
        init_pose.longitude = gps_msg_ptr->longitude;
        init_pose.altitude = gps_msg_ptr->altitude;
        init = true;
    }
    else
    {
    //计算相对位置
        double radLat1 ,radLat2, radLong1,radLong2,delta_lat,delta_long;
		radLat1 = rad(init_pose.latitude);
        radLong1 = rad(init_pose.longitude);
		radLat2 = rad(gps_msg_ptr->latitude);
		radLong2 = rad(gps_msg_ptr->longitude);
        //计算x
		delta_lat = radLat2 - radLat1;
        delta_long = 0;
        double x = 2*asin( sqrt( pow( sin( delta_lat/2 ),2) + cos( radLat1 )*cos( radLat2)*pow( sin( delta_long/2 ),2 ) ));
        x = x*EARTH_RADIUS*1000;

        //计算y
		delta_lat = 0;
        delta_long = radLong1  - radLong2;
        double y = 2*asin( sqrt( pow( sin( delta_lat/2 ),2) + cos( radLat2 )*cos( radLat2)*pow( sin( delta_long/2 ),2 ) ) );
        y = y*EARTH_RADIUS*1000;

        //计算z
        double z = gps_msg_ptr->altitude - init_pose.altitude;

        //发布轨迹
        ros_path_.header.frame_id = "path";
        ros_path_.header.stamp = ros::Time::now();  

        geometry_msgs::PoseStamped pose;
        pose.header = ros_path_.header;

        pose.pose.position.x = x;
        pose.pose.position.y = y;
        pose.pose.position.z = z;

        ros_path_.poses.push_back(pose);

        //ROS_INFO("( x:%0.6f ,y:%0.6f ,z:%0.6f)",x ,y ,z );
	cout<<x<<","<<y<<","<<z<<endl;
        state_pub_.publish(ros_path_);
    }
}

简单调整如下,只是将 X 变为 Y,Y 变为 X,影响不大

        		// 计算x
            delta_lat = 0;
            delta_long = radLong1 - radLong2;           
            double x = 2 * asin(sqrt(pow(sin(delta_lat / 2), 2) + cos(radLat1) * cos(radLat2) * pow(sin(delta_long / 2), 2)));
            x = x * EARTH_RADIUS * 1000;
            cout << "delta_lat: " << delta_lat << "\tdelta_long: " << delta_long << "\tx: " << x << endl;

            // 计算y
            delta_lat = radLat2 - radLat1;
            delta_long = 0;
            double y = 2 * asin(sqrt(pow(sin(delta_lat / 2), 2) + cos(radLat2) * cos(radLat2) * pow(sin(delta_long / 2), 2)));
            y = y * EARTH_RADIUS * 1000;
            cout << "delta_lat: " << delta_lat << "\tdelta_long: " << delta_long << "\ty: " << y << endl;

XY 坐标误差

另外对于原地旋转经纬度不变情况下存在较大 XY 方向位移的问题,打印过程中各变量分析

      			// 计算相对位置
            double radLat1, radLat2, radLong1, radLong2, delta_lat, delta_long;
            radLat1 = rad(init_pose.latitude);
            radLong1 = rad(init_pose.longitude);
            radLat2 = rad(latitude);
            radLong2 = rad(longitude);
            cout << "radLat1: " << radLat1 << "\tradLong1: " << radLong1 << "\tradLat2: " << radLat2 << "\tradLong2: " << radLong2 << endl;
            // 计算x
            delta_lat = radLat2 - radLat1;
            delta_long = 0;
            double x = 2 * asin(sqrt(pow(sin(delta_lat / 2), 2) + cos(radLat1) * cos(radLat2) * pow(sin(delta_long / 2), 2)));
            x = x * EARTH_RADIUS * 1000;
            cout << "delta_lat: " << delta_lat << "\tdelta_long: " << delta_long << "\tx: " << x << endl;

            // 计算y
            delta_lat = 0;
            delta_long = radLong1 - radLong2;
            double y = 2 * asin(sqrt(pow(sin(delta_lat / 2), 2) + cos(radLat2) * cos(radLat2) * pow(sin(delta_long / 2), 2)));
            y = y * EARTH_RADIUS * 1000;
            cout << "delta_lat: " << delta_lat << "\tdelta_long: " << delta_long << "\tx: " << y << endl;

            cout << "---------" << endl;
latitude: 31.8489	longitude: 117.293	heading_angle: 5.3
latitude: 31.8489	longitude: 117.293	heading_angle: 59.4
radLat1: 0.555868	radLong1: 2.04715	radLat2: 0.555868	radLong2: 2.04715
delta_lat: 4.23824e-09	delta_long: 0	x: 0.0270035
delta_lat: 0	delta_long: -3.21722e-09	x: 0.017412
---------
latitude: 31.8489	longitude: 117.293	heading_angle: 81.7
radLat1: 0.555868	radLong1: 2.04715	radLat2: 0.555868	radLong2: 2.04715
delta_lat: 5.49488e-09	delta_long: 0	x: 0.03501
delta_lat: 0	delta_long: -3.44412e-09	x: 0.01864
---------
latitude: 31.8489	longitude: 117.293	heading_angle: 77.2
radLat1: 0.555868	radLong1: 2.04715	radLat2: 0.555868	radLong2: 2.04715
delta_lat: 7.45837e-09	delta_long: 0	x: 0.0475202
delta_lat: 0	delta_long: -4.94219e-09	x: 0.0267478
---------
latitude: 31.8489	longitude: 117.293	heading_angle: 89.2
radLat1: 0.555868	radLong1: 2.04715	radLat2: 0.555868	radLong2: 2.04715
delta_lat: 6.86205e-09	delta_long: 0	x: 0.0437208
delta_lat: 0	delta_long: -3.36267e-09	x: 0.0181992
---------
latitude: 31.8489	longitude: 117.293	heading_angle: 337.7
radLat1: 0.555868	radLong1: 2.04715	radLat2: 0.555868	radLong2: 2.04715
delta_lat: 8.62774e-09	delta_long: 0	x: 0.0549707
delta_lat: 0	delta_long: 4.10152e-09	x: 0.022198
---------

发现 radLat1 和 radLat2 相等,但是 delta_lat 却一直在变化,经度同理,这是 XY 坐标变化的主因

这里涉及到计算机中小数的表示,浮点数无法被精确表示,虽然 radLat1 和 radLat2 前几位都是 0.555868,但最后的尾部无法始终相同,因此相减后始终存在极小的误差,e-09 级别

round() 函数可以用于保留小数,详见 2022-07-30 C++:round函数用法

在进行角度和弧度转换时限定浮点数精度,调整 cout 输出精度后输出如下

// 角度制转弧度制
double deg2rad(double deg)
{
    double rad = deg * M_PI / 180.0;
    // 保留有限小数
    rad = round(rad * 1000000000) / 1000000000;
    return rad;
}

		cout.setf(ios::fixed);
    cout.precision(9);
/home/redwall/catkin_ws/src/gps_sensor/log/2023-11-10/clockwise.txt
latitude: 31.848888521	longitude: 117.293244513	heading_angle: 5.300000000
latitude: 31.848888763	longitude: 117.293244698	heading_angle: 59.400000000
delta_lat: 0.000000000	delta_long: -0.000000003	x: 0.016236402
delta_lat: 0.000000004	delta_long: 0.000000000	y: 0.025485572
---------
latitude: 31.848888835	longitude: 117.293244711	heading_angle: 81.700000000
delta_lat: 0.000000000	delta_long: -0.000000004	x: 0.021648536
delta_lat: 0.000000005	delta_long: 0.000000000	y: 0.031856965
---------
latitude: 31.848888948	longitude: 117.293244797	heading_angle: 77.200000000
delta_lat: 0.000000000	delta_long: -0.000000005	x: 0.027060668
delta_lat: 0.000000007	delta_long: 0.000000000	y: 0.044599750
---------
latitude: 31.848888914	longitude: 117.293244706	heading_angle: 89.200000000
delta_lat: 0.000000000	delta_long: -0.000000003	x: 0.016236402
delta_lat: 0.000000007	delta_long: 0.000000000	y: 0.044599750
---------
latitude: 31.848889015	longitude: 117.293244278	heading_angle: 337.700000000
delta_lat: 0.000000000	delta_long: 0.000000004	x: 0.021648534
delta_lat: 0.000000008	delta_long: 0.000000000	y: 0.050971144
---------
latitude: 31.848888630	longitude: 117.293243995	heading_angle: 331.400000000
delta_lat: 0.000000000	delta_long: 0.000000009	x: 0.048709202
delta_lat: 0.000000002	delta_long: 0.000000000	y: 0.012742786
---------
latitude: 31.848888411	longitude: 117.293243583	heading_angle: 238.000000000
delta_lat: 0.000000000	delta_long: 0.000000016	x: 0.086594137
delta_lat: -0.000000002	delta_long: 0.000000000	y: 0.012742786
---------
latitude: 31.848888926	longitude: 117.293243262	heading_angle: 269.000000000
delta_lat: 0.000000000	delta_long: 0.000000022	x: 0.119066939
delta_lat: 0.000000007	delta_long: 0.000000000	y: 0.044599750
---------
latitude: 31.848889280	longitude: 117.293242747	heading_angle: 265.900000000
delta_lat: 0.000000000	delta_long: 0.000000031	x: 0.167776140
delta_lat: 0.000000013	delta_long: 0.000000000	y: 0.082828109
---------

观察确实主要在 latitude 和 longtitude 的 6 ~ 9 位小数会发生变化,导致 XY 坐标的变化

保留有限的小数可以一定程度上限制数据的抖动,但也会使得 path.txt 无法输出轨迹,比较矛盾

/home/redwall/catkin_ws/src/gps_sensor/log/2023-11-10/path.txt
latitude: 31.848883337	longitude: 117.293247277	heading_angle: 35.900000000
latitude: 31.848883241	longitude: 117.293247357	heading_angle: 49.400000000
delta_lat: 0.000000000	delta_long: 0.000000000	x: 0.000000000
delta_lat: 0.000000000	delta_long: 0.000000000	y: 0.000000000
---------
latitude: 31.848883139	longitude: 117.293247392	heading_angle: 198.800000000
delta_lat: 0.000000000	delta_long: 0.000000000	x: 0.000000000
delta_lat: 0.000000000	delta_long: 0.000000000	y: 0.000000000
---------
latitude: 31.848883027	longitude: 117.293247506	heading_angle: 37.300000000
delta_lat: 0.000000000	delta_long: 0.000000000	x: 0.000000000
delta_lat: 0.000000000	delta_long: 0.000000000	y: 0.000000000
---------
latitude: 31.848883101	longitude: 117.293247264	heading_angle: 359.300000000
delta_lat: 0.000000000	delta_long: 0.000000000	x: 0.000000000
delta_lat: 0.000000000	delta_long: 0.000000000	y: 0.000000000
---------
latitude: 31.848882789	longitude: 117.293247238	heading_angle: 175.200000000
delta_lat: 0.000000000	delta_long: 0.000000000	x: 0.000000000
delta_lat: 0.000000000	delta_long: 0.000000000	y: 0.000000000

问题分析

考虑 GPS 本身的定位精度,以及移动距离过短两方面引起误差的产生

差分定位(Differential GPS,DGPS)是一种通过引入参考站观测数据来提高全球定位系统(GPS)接收机测量精度的技术。通常,差分GPS可以提供亚米级的位置精度,甚至更高,相比于普通的独立GPS。

差分GPS系统的基本原理是,参考站与GPS接收机接收相同的卫星信号,然后比较它们的观测值与已知的准确位置。由于参考站的位置已知,它可以检测到GPS信号由于大气层、电离层等环境因素引起的误差,并将这些误差信息传输给用户设备,从而实现位置精度的提高。

DGPS的精度取决于多个因素,包括:

  1. 基站位置的准确性: 基站的准确位置对差分定位的精度至关重要。
  2. 基站到用户接收机的距离: 基站越接近用户设备,传输的差分校正信息的精度就越高。
  3. 使用的卫星数量和分布: 使用更多的卫星可以提高定位的准确性。
  4. 大气层和电离层的变化: 大气层和电离层的变化会引起GPS信号的传播延迟,这可能影响定位的精度。

总体而言,在适当的条件下,差分GPS可以提供比普通独立GPS更高的位置精度,通常在亚米级别。然而,实际精度可能会受到环境、设备和使用条件的影响。

其实关于 GPS 数据在 Rviz 中显示,2020 年已经有相关技术博客

ROS:GPS坐标序列可视化(在Rviz中显示轨迹)

GPS坐标转换并实时显示轨迹

ROS入门:GPS坐标转换&Rviz显示轨迹

将GPS轨迹,从经纬度WGS-84坐标转换到真实世界xyz坐标系(东北天ENU)下(思路:计算出每个gps坐标相对与第一个坐标的距离(m为单位),比较相邻两点的经纬度变化,赋予位移的方向,然后累加得到轨迹)

陆辉东的代码和博客中几乎一样,应该也是学习借鉴了

对于精度的问题可以参考下面的博客解决

小场景下基于ROS的GPS经纬高度值转换为平面XYZ坐标值,并用RVIZ显示轨迹

在这里插入图片描述
在这里插入图片描述

另外还可以将 GPS 数据在卫星地图中显示,获得比较酷炫的效果

在这里插入图片描述
在这里插入图片描述

ROS下如何将GPS数据在卫星地图显示(两种开源方法)

ROS采集GPS/北斗数据在百度地图中可视化位置

SLAM中将地图映射到谷歌地图上的方法——完美运行

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1250244.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Int8量化算子在移动端CPU的性能优化

本文介绍了Depthwise Convolution 的Int8算子在移动端CPU上的性能优化方案。ARM架构的升级和相应指令集的更新不断提高移动端各算子的性能上限&#xff0c;结合数据重排和Sdot指令能给DepthwiseConv量化算子的性能带来较大提升。 背景 MNN对ConvolutionDepthwise Int8量化算子在…

计算机组成原理-固态硬盘SSD

文章目录 总览机械硬盘vs固态硬盘固态硬盘的结构固态硬盘与机械硬盘相比的特点磨损均衡技术例题 总览 机械硬盘vs固态硬盘 固态硬盘采用闪存技术&#xff0c;是电可擦除ROM 下图右边黑色的块块就是一块一块的闪存芯片 固态硬盘的结构 块大小16KB~512KB 页大小512B~4KB 对固…

ES6之class类

ES6提供了更接近传统语言的写法&#xff0c;引入了Class类这个概念&#xff0c;作为对象的模板。通过Class关键字&#xff0c;可以定义类&#xff0c;基本上&#xff0c;ES6的class可以看作只是一个语法糖&#xff0c;它的绝大部分功能&#xff0c;ES5都可以做到&#xff0c;新…

数据库的事务的基本特性,事务的隔离级别,事务隔离级别如何在java代码中使用,使用MySQL数据库演示不同隔离级别下的并发问题

文章目录 数据库的事务的基本特性事务的四大特性(ACID)4.1、原子性&#xff08;Atomicity&#xff09;4.2、一致性&#xff08;Consistency&#xff09;4.3、隔离性&#xff08;Isolation&#xff09;4.4、持久性&#xff08;Durability&#xff09; 事务的隔离级别5.1、事务不…

6.11左叶子之和(LC404-E)

用java定义树&#xff1a; public class TreeNode {int val;TreeNode left;TreeNode right; //一个空构造方法TreeNode()&#xff0c;用于初始化节点的默认值。TreeNode() {} //一个构造方法TreeNode(int val)&#xff0c;用于初始化节点的值&#xff0c;并设置默认的左右子节…

算法笔记:OPTICS 聚类

1 基本介绍 OPTICS(Ordering points to identify the clustering structure)是一基于密度的聚类算法 OPTICS算法是DBSCAN的改进版本 在DBCSAN算法中需要输入两个参数&#xff1a; ϵ 和 MinPts &#xff0c;选择不同的参数会导致最终聚类的结果千差万别&#xff0c;因此DBCSAN…

分布式篇---第六篇

系列文章目录 文章目录 系列文章目录前言一、说说什么是漏桶算法二、说说什么是令牌桶算法三、数据库如何处理海量数据?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码…

可观测性建设实践之 - 日志分析的权衡取舍

指标、日志、链路是服务可观测性的三大支柱&#xff0c;在服务稳定性保障中&#xff0c;通常指标侧重于发现故障和问题&#xff0c;日志和链路分析侧重于定位和分析问题&#xff0c;其中日志实际上是串联这三大维度的一个良好桥梁。 但日志分析往往面临成本和效果之间的权衡问…

Spring Boot Actuator 2.2.5 基本使用

1. pom文件 &#xff0c;添加 Actuator 依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-actuator</artifactId> </dependency> 2.application.properties 文件中添加以下配置 …

优秀软件设计特征与原则

1.摘要 一款软件产品好不好用, 除了拥有丰富的功能和人性化的界面设计之外, 还有其深厚的底层基础, 而设计模式和算法是构建这个底层基础的基石。好的设计模式能够让产品开发快速迭代且稳定可靠, 迅速抢占市场先机&#xff1b;而好的算法能够让产品具有核心价值, 例如字节跳动…

2、用命令行编译Qt程序生成可执行文件exe

一、创建源文件 1、新建一个文件夹&#xff0c;并创建一个txt文件 2、重命名为main.cpp 3、在main.cpp中添加如下代码 #include <QApplication> #include <QDialog> #include <QLabel> int main(int argc, char *argv[]) { QApplication a(argc, argv); QDi…

深入浅出 Linux 中的 ARM IOMMU SMMU II

SMMU 驱动中的系统 I/O 设备探测 要使系统 I/O 设备的 DMA 内存访问能通过 IOMMU&#xff0c;需要将系统 I/O 设备和 IOMMU 设备绑定起来&#xff0c;也就是执行 SMMU 驱动中的系统 I/O 设备探测。总线发现系统 I/O 设备并和对应的驱动程序绑定&#xff0c;与 IOMMU 设备驱动程…

设备管理系统-设备管理软件

一、为什么要使用设备管理系统 1.企业扩张快&#xff0c;设备配置多&#xff0c;管理混乱。 2.设备数量多&#xff0c;存放地点多&#xff0c;查找麻烦。 3.同类设备单独管理, 困难。 4.设备较多时相关信息统计容易出错&#xff0c;错误后修改困难。 二、凡尔码设备管理软件的…

EEG脑电信号处理合集(1):功率谱中常见artifacts

通常EEG脑电信号采集完成以后&#xff0c;我们可以绘制出功率谱&#xff0c;一个正常的功率谱如下图所示&#xff1a; 在10H在处有个明显的突起&#xff0c;在后方通道中&#xff0c;这是我们所期望看到的。每个通道功率谱曲线都有一个负斜率&#xff0c;这是因为较高的频率通…

使用 HTML、CSS 和 JavaScript 创建图像滑块

使用 HTML、CSS 和 JavaScript 创建轮播图 在本文中&#xff0c;我们将讨论如何使用 HTML、CSS 和 JavaScript 构建轮播图。我们将演示两种不同的创建滑块的方法&#xff0c;一种是基于opacity的滑块&#xff0c;另一种是基于transform的。 创建 HTML 我们首先从 HTML 代码开…

NB-IoT BC260Y Open CPU平台篇②AEP物联网平台天翼物联CWing

NB-IoT BC260Y Open CPU平台篇②AEP物联网平台天翼物联CWing 1、注册账号2、创建属于自己项目的产品3、协议解析:4、添加设备5、设备模拟测试:6、设备调试:最近做了几个项目,都是将终端产品连接到天翼物联Cwing平台和Onenet平台,个人感觉这2个平台功能还是挺全的比较好用。…

Linux 常见命令篇

history 获取执行的指令记录 语法格式: history [参数] 常用参数&#xff1a; -a 写入命令记录 -c 清空命令记录 -d 删除指定序号的命令记录 -n 读取命令记录 -r 读取命令记录到缓冲区 -s 将指定的命令添加到缓冲区 -w 将缓冲区信息写入到历史文件 history#获取最近的三条…

Jquery ajax 进行网络请求,同步阻塞引起的UI线程阻塞 (loading图片不显示 )

jax重新获取数据刷新页面功能&#xff0c;因为ajax属于耗时操作&#xff0c;想在获取数据且加载页面时显示加载遮罩层&#xff0c;结果发现了ajax的好多坑。 ajax 执行http网络请示时时&#xff0c;让遮罩层显示&#xff0c;ajax加载完毕后遮罩层消失。 因为我想让loadChart()…

机器学习第13天:模型性能评估指标

☁️主页 Nowl &#x1f525;专栏《机器学习实战》 《机器学习》 &#x1f4d1;君子坐而论道&#xff0c;少年起而行之 文章目录 交叉验证 保留交叉验证 k-折交叉验证 留一交叉验证 混淆矩阵 精度与召回率 介绍 精度 召回率 区别 使用代码 偏差与方差 介绍 区…

【阿里云】图像识别 智能分类识别 项目开发(一)

语音模块和阿里云图像识别结合 环境准备 代码实现 编译运行 写个shell脚本用于杀死运行的进程 语音模块和阿里云图像识别结合 使用语音模块和摄像头在香橙派上做垃圾智能分类识别 语音控制摄像下载上传阿里云解析功能点实现 环境准备 将语音模块接在UART5的位置 在orange…