ZKP11.3 Correlation Intractability

news2024/12/23 8:09:46

ZKP学习笔记

ZK-Learning MOOC课程笔记

Lecture 11: From Practice to Theory (Guest Lecturer: Alex Lombardi)

11.3 What can we do without random oracle model

  • Falsifiable Assumptions
    • Prove security assuming that some concrete algorithmic task is infeasible:
      • Computing discrete logarithms is hard.
      • Solving random noisy linear equations (LWE) is hard.
      • SHA256 is collision-resistant
    • Many cryptographic constructions use random oracles to get better efficiency, but can be based on falsifiable assumptions.
      • CCA-secure public key encryption
      • Identity-based encryption.
      • Non-interactive zero knowledge
    • Can (ZK-)SNARKs for NP be built based on falsifiable assumptions?
      • (minor caveats but) No!
      • No way to extract a long witness from a short proof. Need assumption (RO, “knowledge assumption”) that guarantees adversary “knows” a long string given a short commitment.
    • Can (ZK-)SNARGs for NP be built based on falsifiable assumptions?
      • It’s complicated. (We don’t know)
      • Significant barriers [Gentry-Wichs ‘11]
      • The community is still trying to understand this.
  • SNARGs for limited computations from falsifiable assumptions (LWE)
    • Two tools/techniques
      • Correlation-intractable hash functions [CCHLRRW19,PS19,HLR21]
        • Used to instantiate Fiat-Shamir without random oracles, for “nice enough” interactive protocols
      • Somewhere extractable commitments [HW15]
        • Used to make a “nice enough” interactive protocol
        • Special variant of the typical IOP-based approach.
  • Correlation Intractability
    • Function
      在这里插入图片描述

    • Binary relations
      在这里插入图片描述

    • Weren’t these impossible to build?

      • Restrict to fixed input length (necessary)
      • Restrict to fixed running time on f (unclear if necessary)
    • CI Construction

      • A simple construction [CLW18] using Fully Homomorphic Encryption (FHE)
        在这里插入图片描述

在这里插入图片描述

  • Security Analysis
    在这里插入图片描述

  • Correlation Intractability: what we know
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1249890.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

案例024:基于微信小程序的汽车保养系统

文末获取源码 开发语言:Java 框架:SSM JDK版本:JDK1.8 数据库:mysql 5.7 开发软件:eclipse/myeclipse/idea Maven包:Maven3.5.4 小程序框架:uniapp 小程序开发软件:HBuilder X 小程序…

【华为网络-配置-021】- MSTP 多实例配置及安全保护等

要求: 1、vlan 10 从红色链路转发。 2、vlan 20 从黄色链路转发。 一、基础配置 [SW1]vlan batch 10 20 [SW1]interface GigabitEthernet 0/0/1 [SW1-GigabitEthernet0/0/1]port link-type trunk [SW1-GigabitEthernet0/0/1]port trunk allow-pass vlan all [SW…

【点云surface】 修剪B样条曲线拟合

1 介绍 Fitting trimmed B-splines(修剪B样条曲线拟合)是一种用于对给定的点云数据进行曲线拟合的算法。该算法使用B样条曲线模型来逼近给定的点云数据,并通过对模型进行修剪来提高拟合的精度和准确性。 B样条曲线是一种常用的曲线表示方法…

深度学习之基于Tensorflow银行卡号码识别系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介银行卡号码识别的步骤TensorFlow的优势 二、功能三、系统四. 总结 一项目简介 # 深度学习基于TensorFlow的银行卡号码识别介绍 深度学习在图像识别领域取得…

浏览器缓存、本地存储、Cookie、Session、Token

目录 前端通信(渲染、http、缓存、异步、跨域) HTTP与HTTPS,HTTP版本、状态码 请求头,响应头 缓存 强制缓存:Cache-Control:max-age(HTTP1.1)>Expires(1.0) js、…

python pdf转txt文本、pdf转json

文章目录 一、前言二、实现方法1. 目录结构2. 代码 一、前言 此方法只能转文本格式的pdf,如果是图片格式的pdf需要用到ocr包,以后如果有这方面需求再加这个方法 二、实现方法 1. 目录结构 2. 代码 pdf2txt.py 代码如下 #!/usr/bin/env python # -*- …

【LM、LLM】浅尝二叉树在前馈神经网络上的应用

前言 随着大模型的发展,模型参数量暴涨,以Transformer的为组成成分的隐藏神经元数量增长的越来越多。因此,降低前馈层的推理成本逐渐进入视野。前段时间看到本文介绍的相关工作还是MNIST数据集上的实验,现在这个工作推进到BERT上…

【Java程序员面试专栏 专业技能篇】Java SE核心面试指引(三):核心机制策略

关于Java SE部分的核心知识进行一网打尽,包括四部分:基础知识考察、面向对象思想、核心机制策略、Java新特性,通过一篇文章串联面试重点,并且帮助加强日常基础知识的理解,全局思维导图如下所示 本篇Blog为第三部分:核心机制策略,子节点表示追问或同级提问 异常处理 …

机器学习之自监督学习(四)MoCo系列翻译与总结(一)

Momentum Contrast for Unsupervised Visual Representation Learning Abstract 我们提出了“动量对比”(Momentum Contrast,MoCo)来进行无监督的视觉表示学习。从对比学习的角度来看,我们将其视为字典查找,通过构建…

Spring - Mybatis-设计模式总结

Mybatis-设计模式总结 1、Builder模式 2、工厂模式 3、单例模式 4、代理模式 5、组合模式 6、模板方法模式 7、适配器模式 8、装饰者模式 9、迭代器模式 虽然我们都知道有26个设计模式,但是大多停留在概念层面,真实开发中很少遇到,…

Day31| Leetcode 455. 分发饼干 Leetcode 376. 摆动序列 Leetcode 53. 最大子数组和

进入贪心了&#xff0c;我觉得本专题是最烧脑的专题 Leetcode 455. 分发饼干 题目链接 455 分发饼干 让大的饼干去满足需求量大的孩子即是本题的思路&#xff1a; class Solution { public:int findContentChildren(vector<int>& g, vector<int>& s) {…

【差分放大电路分析】2021-12-31

缘由有哪位愿意帮助一下的-嵌入式-CSDN问答 截图&#xff0c;数值自己去计算。上2图是接电阻&#xff0c;下2图是接三极管。

JVM内存模型及调优

本文将为大家详细介绍JVM内存模型及如何对JVM内存进行调优。我们将分为以下几个部分进行讲解&#xff1a; JVM内存模型概述JVM内存区域及作用JVM内存调优方法实战案例与优化技巧 一、JVM内存模型概述 在深入了解JVM内存模型之前&#xff0c;我们需要先了解一下Java内存模型&am…

01、Tensorflow实现二元手写数字识别

01、Tensorflow实现二元手写数字识别&#xff08;二分类问题&#xff09; 开始学习机器学习啦&#xff0c;已经把吴恩达的课全部刷完了&#xff0c;现在开始熟悉一下复现代码。对这个手写数字实部比较感兴趣&#xff0c;作为入门的素材非常合适。 基于Tensorflow 2.10.0 1、…

NeurIPS 2023|AI Agents先行者CAMEL:第一个基于大模型的多智能体框架

AI Agents是当下大模型领域备受关注的话题&#xff0c;用户可以引入多个扮演不同角色的LLM Agents参与到实际的任务中&#xff0c;Agents之间会进行竞争和协作等多种形式的动态交互&#xff0c;进而产生惊人的群体智能效果。本文介绍了来自KAUST研究团队的大模型心智交互CAMEL框…

浅谈安科瑞无线测温设备在挪威某项目的应用

摘要&#xff1a;安科瑞无线温度设备装置通过无线温度收发器和各无线温度传感器直接进行温度值的传输&#xff0c;并采用液晶显示各无线温度传感器所测温度。 Absrtact:Acre wireless temperature device directly transmits the temperature value through the wireless temp…

Nginx安装与配置、使用Nginx负载均衡及动静分离、后台服务部署、环境准备、系统拓扑图

目录 1. 系统拓扑图 2. 环境准备 3. 服务器安装 3.1 mysql&#xff0c;tomcat 3.2 Nginx的安装 4. 部署 4.1 后台服务部署 4.2 Nginx配置负载均衡及静态资源部署 1. 系统拓扑图 说明&#xff1a; 用户请求达到Nginx若请求资源为静态资源&#xff0c;则将请求转发至静态…

【蓝桥杯省赛真题47】Scratch小猫踩球 蓝桥杯scratch图形化编程 中小学生蓝桥杯省赛真题讲解

目录 scratch小猫踩球 一、题目要求 编程实现 二、案例分析 1、角色分析

vue3.0使用leaflet

1、获取天地图密钥&#xff1b; 访问:https://www.tianditu.gov.cn/ 注册并登录&#xff0c;访问开发资源 》地图API 》 地图服务》申请key 应用管理》创建新应用》获取到对应天地图key 2、引入leaflet组件 参考资料&#xff1a;https://leafletjs.com/reference.html#pa…

一盏茶的时间,入门 Node.js

一、.什么是 Node.js&#xff1f; Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行时&#xff0c;用于构建高性能、可伸缩的网络应用。 它采用事件驱动、非阻塞 I/O 模型&#xff0c;使其在处理并发请求时表现出色。 二、安装 Node.js 首先&#xff0c;让我们从 Node.…