黑马点评笔记 分布式锁

news2024/9/22 15:43:40

文章目录

    • 分布式锁
      • 基本原理和实现方式对比
      • Redis分布式锁的实现核心思路
      • 实现分布式锁版本一
      • Redis分布式锁误删情况说明
      • 解决Redis分布式锁误删问题
      • 分布式锁的原子性问题
      • 分布式锁-Redission
      • 分布式锁-redission可重入锁原理
      • 分布式锁-redission锁重试和WatchDog机制
      • 分布式锁-redission锁的MutiLock原理

分布式锁

基本原理和实现方式对比

分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。

分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路

在这里插入图片描述

那么分布式锁他应该满足的条件呢?

可见性:多个线程都能看到相同的结果,注意:这个地方说的可见性并不是并发编程中指的内存可见性,只是说多个进程之间都能感知到变化的意思

互斥:互斥是分布式锁的最基本的条件,使得程序串行执行

高可用:程序不易崩溃,时时刻刻都保证较高的可用性

高性能:由于加锁本身就让性能降低,所有对于分布式锁本身需要他就较高的加锁性能和释放锁性能

安全性:安全也是程序中必不可少的一环

常见的分布式锁有三种

  • Mysql:mysql本身就带有锁机制,但是由于mysql性能本身一般,所以采用分布式锁的情况下,其实使用mysql作为分布式锁比较少见

  • Redis:redis作为分布式锁是非常常见的一种使用方式,现在企业级开发中基本都使用redis或者zookeeper作为分布式锁,利用setnx这个方法,如果插入key成功,则表示获得到了锁,如果有人插入成功,其他人插入失败则表示无法获得到锁,利用这套逻辑来实现分布式锁

  • Zookeeper:zookeeper也是企业级开发中较好的一个实现分布式锁的方案

Redis分布式锁的实现核心思路

实现分布式锁时需要实现的两个基本方法:

  • 获取锁:

    • 互斥:确保只能有一个线程获取锁
    • 非阻塞:尝试一次,成功返回true,失败返回false
  • 释放锁:

    • 手动释放
    • 超时释放:获取锁时添加一个超时时间

核心思路:

我们利用redis 的setNx 方法,当有多个线程进入时,我们就利用该方法,第一个线程进入时,redis 中就有这个key 了,返回了1,如果结果是1,则表示他抢到了锁,那么他去执行业务,然后再删除锁,退出锁逻辑,没有抢到锁的哥们,等待一定时间后重试即可

实现分布式锁版本一

  • 加锁逻辑

锁的基本接口

在这里插入图片描述

SimpleRedisLock

利用setnx方法进行加锁,同时增加过期时间,防止死锁,此方法可以保证加锁和增加过期时间具有原子性
我们的方法,是把存在线程中的用户的id作为redis中的中的键,这样我们就可以作为为每一个用户设置单独的锁,而且我们也会为每个锁设置单的过期时间从而防止死锁,具体代码,可以看下面:

private static final String KEY_PREFIX="lock:"
@Override
public boolean tryLock(long timeoutSec) {
    // 获取线程标示
    String threadId = Thread.currentThread().getId()
    // 获取锁
    Boolean success = stringRedisTemplate.opsForValue()
            .setIfAbsent(KEY_PREFIX + name, threadId + "", timeoutSec, TimeUnit.SECONDS);
    return Boolean.TRUE.equals(success);
}

Redis分布式锁误删情况说明

逻辑说明:

持有锁的线程在锁的内部出现了阻塞,导致他的锁自动释放,这时其他线程,线程2来尝试获得锁,就拿到了这把锁,然后线程2在持有锁执行过程中,线程1反应过来,继续执行,而线程1执行过程中,走到了删除锁逻辑,此时就会把本应该属于线程2的锁进行删除,这就是误删别人锁的情况说明

解决方案:解决方案就是在每个线程释放锁的时候,去判断一下当前这把锁是否属于自己,如果属于自己,则不进行锁的删除,假设还是上边的情况,线程1卡顿,锁自动释放,线程2进入到锁的内部执行逻辑,此时线程1反应过来,然后删除锁,但是线程1,一看当前这把锁不是属于自己,于是不进行删除锁逻辑,当线程2走到删除锁逻辑时,如果没有卡过自动释放锁的时间点,则判断当前这把锁是属于自己的,于是删除这把锁。

在这里插入图片描述

解决Redis分布式锁误删问题

需求:修改之前的分布式锁实现,满足:在获取锁时存入线程标示(可以用UUID表示)
在释放锁时先获取锁中的线程标示,判断是否与当前线程标示一致

  • 如果一致则释放锁
  • 如果不一致则不释放锁

核心逻辑:在存入锁时,放入自己线程的标识,在删除锁时,判断当前这把锁的标识是不是自己存入的,如果是,则进行删除,如果不是,则不进行删除。

在这里插入图片描述
具体代码如下:加锁

private static final String ID_PREFIX = UUID.randomUUID().toString(true) + "-";
@Override
public boolean tryLock(long timeoutSec) {
   // 获取线程标示
   String threadId = ID_PREFIX + Thread.currentThread().getId();
   // 获取锁
   Boolean success = stringRedisTemplate.opsForValue()
                .setIfAbsent(KEY_PREFIX + name, threadId, timeoutSec, TimeUnit.SECONDS);
   return Boolean.TRUE.equals(success);
}

释放锁

public void unlock() {
    // 获取线程标示
    String threadId = ID_PREFIX + Thread.currentThread().getId();
    // 获取锁中的标示
    String id = stringRedisTemplate.opsForValue().get(KEY_PREFIX + name);
    // 判断标示是否一致
    if(threadId.equals(id)) {
        // 释放锁
        stringRedisTemplate.delete(KEY_PREFIX + name);
    }
}

分布式锁的原子性问题

更为极端的误删逻辑说明:

线程1现在持有锁之后,在执行业务逻辑过程中,他正准备删除锁,而且已经走到了条件判断的过程中,比如他已经拿到了当前这把锁确实是属于他自己的,正准备删除锁,但是此时他的锁到期了,那么此时线程2进来,但是线程1他会接着往后执行,当他卡顿结束后,他直接就会执行删除锁那行代码,相当于条件判断并没有起到作用,这就是删锁时的原子性问题,之所以有这个问题,是因为线程1的拿锁,比锁,删锁,实际上并不是原子性的,我们要防止刚才的情况发生,

在这里插入图片描述
这个问题可以使用lua脚本实现,但是在java中我们一般会用redission这个第三方库。

分布式锁-Redission

引入依赖:

<dependency>
	<groupId>org.redisson</groupId>
	<artifactId>redisson</artifactId>
	<version>3.13.6</version>
</dependency>

配置Redisson客户端:

@Configuration
public class RedissonConfig {

    @Bean
    public RedissonClient redissonClient(){
        // 配置
        Config config = new Config();
        config.useSingleServer().setAddress("redis://192.168.150.101:6379")
            .setPassword("123321");
        // 创建RedissonClient对象
        return Redisson.create(config);
    }
}

使用Redission的分布式锁

@Resource
private RedissionClient redissonClient;

@Test
void testRedisson() throws Exception{
    //获取锁(可重入),指定锁的名称
    RLock lock = redissonClient.getLock("anyLock");
    //尝试获取锁,参数分别是:获取锁的最大等待时间(期间会重试),锁自动释放时间,时间单位
    boolean isLock = lock.tryLock(1,10,TimeUnit.SECONDS);
    //判断获取锁成功
    if(isLock){
        try{
            System.out.println("执行业务");          
        }finally{
            //释放锁
            lock.unlock();
        }
        
    }
    
    
    
}

业务代码更改
在 VoucherOrderServiceImpl

注入RedissonClient

@Resource
private RedissonClient redissonClient;

@Override
public Result seckillVoucher(Long voucherId) {
        // 1.查询优惠券
        SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
        // 2.判断秒杀是否开始
        if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
            // 尚未开始
            return Result.fail("秒杀尚未开始!");
        }
        // 3.判断秒杀是否已经结束
        if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
            // 尚未开始
            return Result.fail("秒杀已经结束!");
        }
        // 4.判断库存是否充足
        if (voucher.getStock() < 1) {
            // 库存不足
            return Result.fail("库存不足!");
        }
        Long userId = UserHolder.getUser().getId();
        //创建锁对象 这个代码不用了,因为我们现在要使用分布式锁
        //SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);
        RLock lock = redissonClient.getLock("lock:order:" + userId);
        //获取锁对象
        boolean isLock = lock.tryLock();
       
		//加锁失败
        if (!isLock) {
            return Result.fail("不允许重复下单");
        }
        try {
            //获取代理对象(事务)
            IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
            return proxy.createVoucherOrder(voucherId);
        } finally {
            //释放锁
            lock.unlock();
        }
 }

分布式锁-redission可重入锁原理

在Lock锁中,他是借助于底层的一个voaltile的一个state变量来记录重入的状态的,比如当前没有人持有这把锁,那么state=0,假如有人持有这把锁,那么state=1,如果持有这把锁的人再次持有这把锁,那么state就会+1 ,如果是对于synchronized而言,他在c语言代码中会有一个count,原理和state类似,也是重入一次就加一,释放一次就-1 ,直到减少成0 时,表示当前这把锁没有被人持有。

在redission中,我们的也支持支持可重入锁

在分布式锁中,他采用hash结构用来存储锁,其中大key表示表示这把锁是否存在,用小key表示当前这把锁被哪个线程持有,所以接下来我们一起分析一下当前的这个lua表达式

这个地方一共有3个参数

KEYS[1] : 锁名称

ARGV[1]: 锁失效时间

ARGV[2]: id + “:” + threadId; 锁的小key

exists: 判断数据是否存在 name:是lock是否存在,如果==0,就表示当前这把锁不存在

redis.call(‘hset’, KEYS[1], ARGV[2], 1);此时他就开始往redis里边去写数据 ,写成一个hash结构

Lock{

​ id + “:” + threadId : 1

}

如果当前这把锁存在,则第一个条件不满足,再判断

redis.call(‘hexists’, KEYS[1], ARGV[2]) == 1

此时需要通过大key+小key判断当前这把锁是否是属于自己的,如果是自己的,则进行

redis.call(‘hincrby’, KEYS[1], ARGV[2], 1)

将当前这个锁的value进行+1 ,redis.call(‘pexpire’, KEYS[1], ARGV[1]); 然后再对其设置过期时间,如果以上两个条件都不满足,则表示当前这把锁抢锁失败,最后返回pttl,即为当前这把锁的失效时间

分布式锁-redission锁重试和WatchDog机制

抢锁过程中,获得当前线程,通过tryAcquire进行抢锁,该抢锁逻辑和之前逻辑相同

1、先判断当前这把锁是否存在,如果不存在,插入一把锁,返回null

2、判断当前这把锁是否是属于当前线程,如果是,则返回null

所以如果返回是null,则代表着当前已经抢锁完毕,或者可重入完毕,但是如果以上两个条件都不满足,则进入到第三个条件,返回的是锁的失效时间,同学们可以自行往下翻一点点,你能发现有个while( true) 再次进行tryAcquire进行抢锁

long threadId = Thread.currentThread().getId();
Long ttl = tryAcquire(-1, leaseTime, unit, threadId);
// lock acquired
if (ttl == null) {
    return;
}

接下来会有一个条件分支,因为lock方法有重载方法,一个是带参数,一个是不带参数,如果带带参数传入的值是-1,如果传入参数,则leaseTime是他本身,所以如果传入了参数,此时leaseTime != -1 则会进去抢锁,抢锁的逻辑就是之前说的那三个逻辑

if (leaseTime != -1) {
    return tryLockInnerAsync(waitTime, leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
}

如果是没有传入时间,则此时也会进行抢锁, 而且抢锁时间是默认看门狗时间 commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout()

ttlRemainingFuture.onComplete((ttlRemaining, e) 这句话相当于对以上抢锁进行了监听,也就是说当上边抢锁完毕后,此方法会被调用,具体调用的逻辑就是去后台开启一个线程,进行续约逻辑,也就是看门狗线程

RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(waitTime,
                                        commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(),
                                        TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
ttlRemainingFuture.onComplete((ttlRemaining, e) -> {
    if (e != null) {
        return;
    }

    // lock acquired
    if (ttlRemaining == null) {
        scheduleExpirationRenewal(threadId);
    }
});
return ttlRemainingFuture;

此逻辑就是续约逻辑,注意看commandExecutor.getConnectionManager().newTimeout() 此方法

Method( new TimerTask() {},参数2 ,参数3 )

指的是:通过参数2,参数3 去描述什么时候去做参数1的事情,现在的情况是:10s之后去做参数一的事情

因为锁的失效时间是30s,当10s之后,此时这个timeTask 就触发了,他就去进行续约,把当前这把锁续约成30s,如果操作成功,那么此时就会递归调用自己,再重新设置一个timeTask(),于是再过10s后又再设置一个timerTask,完成不停的续约

那么大家可以想一想,假设我们的线程出现了宕机他还会续约吗?当然不会,因为没有人再去调用renewExpiration这个方法,所以等到时间之后自然就释放了。

private void renewExpiration() {
    ExpirationEntry ee = EXPIRATION_RENEWAL_MAP.get(getEntryName());
    if (ee == null) {
        return;
    }
    
    Timeout task = commandExecutor.getConnectionManager().newTimeout(new TimerTask() {
        @Override
        public void run(Timeout timeout) throws Exception {
            ExpirationEntry ent = EXPIRATION_RENEWAL_MAP.get(getEntryName());
            if (ent == null) {
                return;
            }
            Long threadId = ent.getFirstThreadId();
            if (threadId == null) {
                return;
            }
            
            RFuture<Boolean> future = renewExpirationAsync(threadId);
            future.onComplete((res, e) -> {
                if (e != null) {
                    log.error("Can't update lock " + getName() + " expiration", e);
                    return;
                }
                
                if (res) {
                    // reschedule itself
                    renewExpiration();
                }
            });
        }
    }, internalLockLeaseTime / 3, TimeUnit.MILLISECONDS);
    
    ee.setTimeout(task);
}

分布式锁-redission锁的MutiLock原理

为了提高redis的可用性,我们会搭建集群或者主从,现在以主从为例

此时我们去写命令,写在主机上, 主机会将数据同步给从机,但是假设在主机还没有来得及把数据写入到从机去的时候,此时主机宕机,哨兵会发现主机宕机,并且选举一个slave变成master,而此时新的master中实际上并没有锁信息,此时锁信息就已经丢掉了。

在这里插入图片描述

为了解决这个问题,redission提出来了MutiLock锁,每个节点的地位都是一样的, 这把锁加锁的逻辑需要写入到每一个主丛节点上,只有所有的服务器都写入成功,此时才是加锁成功,假设现在某个节点挂了,那么他去获得锁的时候,只要有一个节点拿不到,都不能算是加锁成功,就保证了加锁的可靠性。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1249300.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RocketMQ 消息中间件 知识点汇总

目录 RocketMQ1、什么是RocketMQ?常用术语:2、为什么需要消息队列3、什么是异步处理4、什么是服务解耦5、什么是流量控制6、消息队列两种模型队列模型:发布/订阅模型:总结:7、怎么保证消息不丢失8、如何处理消息被重复消费**出现消息重复的情况:****解决方法:**9、如何保…

RocketMQ消息的一生

这篇文章我准备来聊一聊RocketMQ消息的一生。 不知你是否跟我一样&#xff0c;在使用RocketMQ的时候也有很多的疑惑&#xff1a; 消息是如何发送的&#xff0c;队列是如何选择的&#xff1f; 消息是如何存储的&#xff0c;是如何保证读写的高性能&#xff1f; RocketMQ是如何…

Dreamview底层实现原理

1. Dreamview底层实现原理(3个模块) (1) HMI--可视化人机交互 a. HMIConfig: 1) 支持哪些模式&#xff1b;2)支持哪些地图&#xff1b;3)支持哪些车辆&#xff1b;4)HMIAction HMIMode: b.HMIStatus (2) SimControl (3) Monitor--监视自动驾驶行驶过程中软硬件状态 Referenc…

CentOS 7 安装 Weblogic 14 版本

安装JDK程序 注意&#xff1a;安装weblogic前&#xff0c;先安装JDK&#xff01;&#xff08;要求jdk(1.7以上)&#xff09;&#xff1a; 一、创建用户组weblogic及用户weblogic groupadd weblogic useradd -g weblogic weblogic二、将下载好的jdk及weblogic上传至/home/webl…

2021年12月 Scratch(三级)真题解析#中国电子学会#全国青少年软件编程等级考试

Scratch等级考试(1~4级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 执行下列程序,屏幕上可以看到几只小猫? A:1 B:3 C:4 D:0 答案:B 第2题 下列程序哪个可以实现:按下空格键,播放完音乐后说“你好!”2秒? A: B: C:

【Linux】yum -- 软件包管理器

目录 一、Linux中是如何安装软件的 1.1 安装的方法 1.2 安装的本质(基本理解) 二、软件包 2.1 软件包的概念 2.2 为什么要有软件包 三、yum--软件包管理器 3.1 yum的概念 3.2 yum的使用 3.2.1 搜索一个软件 3.2.2 安装一个软件 3.2.3 卸载一个软件 3.3 yum源更新 …

前端vue导出PPT,使用pptxgen.js

前言 公司新需求需要导出ppt给业务用&#xff0c;查阅资料后发现也挺简单的&#xff0c;记录一下。 如有不懂的可以留言&#xff01;&#xff01;&#xff01; 1.安装包 npm install pptxgenjs --save2.引入包 在需要使用的文件中引入 import Pptxgenfrom "pptxgenjs&…

java学习part10 this

90-面向对象(进阶)-关键字this调用属性、方法、构造器_哔哩哔哩_bilibili 1.java的this java的this性质类似cpp的this&#xff0c; 但它是一种引用&#xff0c;所以用 this. xxx来调用。 this代表当前的类的实例&#xff0c;所以必须和某个对象结合起来使用&#xff0c;不能…

rk3588配置uac功能,android13使能uac及adb的复合设备

最近&#xff0c;因新增需求需要在现有产品上增加UAC的功能&#xff0c;查阅并学习相关知识后&#xff0c;在rk3588 SOC硬件平台搭载android13系统平台上成功配置了uac及uac&adb的复合设备。基于开源共享精神希望给大家提供些参考。 1.技术可行性预研 &#xff08;1&#…

nodejs+vue+python+PHP+微信小程序-留学信息查询系统的设计与实现-安卓-计算机毕业设计

1、用户模块&#xff1a; 1&#xff09;登录&#xff1a;用户注册登录账号。 2&#xff09;留学查询模块&#xff1a;查询学校的入学申请条件、申请日期、政策变动等。 3&#xff09;院校排名&#xff1a;查询国外各院校的实力排名。 4&#xff09;测试功能&#xff1a;通过入学…

LabVIEW中将SMU信号连接到PXI背板触发线

LabVIEW中将SMU信号连接到PXI背板触发线 本文介绍如何将信号从PXI&#xff08;e&#xff09;SMU卡路由到PXI&#xff08;e&#xff09;机箱上的背板触发线。该过程涉及使用NI-DCPowerVI将SMU信号导出到PXI_TRIG线上。 在继续操作之前&#xff0c;请确保在开发PC上安装了兼容版…

防止应用程序截屏(容器式,防止极域电子教室和录屏软件录制)

核心原理、实现目的 1、使用Panel容器将外部窗口嵌入自己写的程序 2、使用防止截屏的函数来对窗口透明&#xff0c;这可以使本窗口内所有窗口在录屏软件上消失 3、解放&#xff0c;抓取&#xff0c;存储句柄&#xff0c;实现摆脱录屏&#xff08;极域监控&#xff09; 程序…

Ps:画笔工具的基本操作

画笔工具 Brush Tool是 Ps 中最常用的工具&#xff0c;广泛地用于绘画与修饰工作。 虽然多数操作可在画笔工具的工具选项栏中选择执行&#xff0c;但是如果能记住相应的快捷键可大大提高工作效率。 熟练掌握画笔工具的操作对于使用其他工具也非常有益&#xff0c;因为 Ps 中许多…

动态规划 之 钢条切割

自顶向下递归实现(Recursive top-down implementation) 程序CUT-ROD对等式(14.2)进行了实现&#xff0c;伪代码如下&#xff1a; CUT-ROD(p, n)if n 0return 0q -∞for i 1 to nq max{q, p[i] CUT-ROD(p, n - i)}return q上面解决中重复对一个子结构问题重复求解了&#…

手把手教你安装 Visual Studio 2022 及其简单使用

软件下载 打开 Visual Studio 官网&#xff0c;个人选择免费的Community社区版就够用了。 软件安装 双击运行安装程序&#xff1a; 点击继续 即可&#xff1a; 等待加载完成&#xff1a; 可以看到 Visual Studio 2022 对应不同的开发需求提供了若干工作负载&#xff0c;这里以…

CSS-长度单位篇

px&#xff1a;像素em&#xff1a;相对元素font-size的倍数rem&#xff1a;相对根字体大小&#xff0c;html标签就是根%&#xff1a;相对父元素计算 注意&#xff1a;CSS中设置长度&#xff0c;必须加单位&#xff0c;否则样式无效&#xff01;

HTML网站稳定性状态监控平台源码

这是一款网站稳定性状态监控平台源码&#xff0c;它基于UptimeRobot接口进行开发。当您的网站遇到故障时&#xff0c;该平台能够通过邮件或短信通知您。下面是对安装过程的详细说明&#xff1a; 安装步骤 将源码上传至您的主机或服务器&#xff0c;并进行解压操作。 在Uptim…

DELL MD3600F存储重置管理软件密码

注意&#xff1a;密码清除可能会导致业务秒断&#xff0c;建议非业务时间操作 针对一台控制器操作即可&#xff0c;另一控制器会同步操作 重置后密码为空&#xff01; 需求&#xff1a;重置存储管理软件密码 管理软件中分配物理磁盘时提示输入密码(类似是否了解风险确认操作的提…

思科模拟器操作命令

模式 思科模拟器常见的模式有 用户模式 能够操作的命令比较少 特权模式特权模式下面可以操作的比较多 全局模式 接口模式 用户模式进入特权模式: 命令enable 特权模式进行全局模式命令: configure terminal 退出命令 exit命令&#xff1a;返回上一层&#xff0c;即一步一步…

javascript判断是否是json格式

文章目录 一、问题二、解决三、总结3.1、定义 一、问题 工作中有用到JSON.parse这个来解析JSON字符串&#xff0c;这个时候突然有一次遇到JSON字符串是长串数字或数字字符串&#xff0c;主要是自己也没兼容好&#xff0c;就导致了一长串数字JSON.parse之后变成了e24等数字。主…