基于C#实现Kruskal算法

news2024/12/29 10:05:42

这篇我们看看第二种生成树的 Kruskal 算法,这个算法的魅力在于我们可以打一下算法和数据结构的组合拳,很有意思的。

一、思想

若存在 M={0,1,2,3,4,5}这样 6 个节点,我们知道 Prim 算法构建生成树是从”顶点”这个角度来思考的,然后采用“贪心思想”来一步步扩大化,最后形成整体最优解,而 Kruskal 算法有点意思,它是站在”边“这个角度在思考的,首先我有两个集合。

1.1、顶点集合(vertexs)

比如 M 集合中的每个元素都可以认为是一个独根树(是不是想到了并查集?)。

1.2、边集合(edges)

对图中的每条边按照权值大小进行排序。(是不是想到了优先队列?)
首先:我们从 edges 中选出权值最小的一条边来作为生成树的一条边,然后将该边的两个顶点合并为一个新的树。
然后:我们继续从 edges 中选出次小的边作为生成树的第二条边,但是前提就是边的两个顶点一定是属于两个集合中,如果不是则剔除该边继续选下一条次小边。
最后:经过反复操作,当我们发现 n 个顶点的图中生成树已经有 n-1 边的时候,此时生成树构建完毕。
image.png
image.png
从图中我们还是很清楚的看到 Kruskal 算法构建生成树的详细过程,同时我们也看到了”并查集“和“优先队列“这两个神器来加速我们的生成树构建。

二、构建

2.1、Build 方法

这里我灌的是一些测试数据,同时在矩阵构建完毕后,将顶点信息放入并查集,同时将边的信息放入优先队列,方便我们在做生成树的时候秒杀。

 #region 矩阵的构建
 /// <summary>
 /// 矩阵的构建
 /// </summary>
 public void Build()
 {
     //顶点数
     graph.vertexsNum = 6;

     //边数
     graph.edgesNum = 8;

     graph.vertexs = new int[graph.vertexsNum];

     graph.edges = new int[graph.vertexsNum, graph.vertexsNum];

     //构建二维数组
     for (int i = 0; i < graph.vertexsNum; i++)
     {
         //顶点
         graph.vertexs[i] = i;

         for (int j = 0; j < graph.vertexsNum; j++)
         {
             graph.edges[i, j] = int.MaxValue;
         }
     }

     graph.edges[0, 1] = graph.edges[1, 0] = 80;
     graph.edges[0, 3] = graph.edges[3, 0] = 100;
     graph.edges[0, 5] = graph.edges[5, 0] = 20;
     graph.edges[1, 2] = graph.edges[2, 1] = 90;
     graph.edges[2, 5] = graph.edges[5, 2] = 70;
     graph.edges[4, 5] = graph.edges[5, 4] = 40;
     graph.edges[3, 4] = graph.edges[4, 3] = 60;
     graph.edges[2, 3] = graph.edges[3, 2] = 10;

     //优先队列,存放树中的边
     queue = new PriorityQueue<Edge>();

     //并查集
     set = new DisjointSet<int>(graph.vertexs);

     //将对角线读入到优先队列
     for (int i = 0; i < graph.vertexsNum; i++)
     {
         for (int j = i; j < graph.vertexsNum; j++)
         {
             //说明该边有权重
             if (graph.edges[i, j] != int.MaxValue)
             {
                 queue.Eequeue(new Edge()
                 {
                     startEdge = i,
                     endEdge = j,
                     weight = graph.edges[i, j]
                 }, graph.edges[i, j]);
             }
         }
     }
 }
 #endregion

2.2、Kruskal 算法

并查集,优先队列都有数据了,下面我们只要出队操作就行了,如果边的顶点不在一个集合中,我们将其收集作为最小生成树的一条边,按着这样的方式,最终生成树构建完毕。

 #region Kruskal算法
 /// <summary>
 /// Kruskal算法
 /// </summary>
 public List<Edge> Kruskal()
 {
     //最后收集到的最小生成树的边
     List<Edge> list = new List<Edge>();

     //循环队列
     while (queue.Count() > 0)
     {
         var edge = queue.Dequeue();

         //如果该两点是同一个集合,则剔除该集合
         if (set.IsSameSet(edge.t.startEdge, edge.t.endEdge))
             continue;

         list.Add(edge.t);

         //然后将startEdge 和 endEdge Union起来,表示一个集合
         set.Union(edge.t.startEdge, edge.t.endEdge);

         //如果n个节点有n-1边的时候,此时生成树已经构建完毕,提前退出
         if (list.Count == graph.vertexsNum - 1)
             break;
     }

     return list;
 }
 #endregion

最后是总的代码:

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 using System.Diagnostics;
 using System.Threading;
 using System.IO;
 using System.Threading.Tasks;
 
 namespace ConsoleApplication2
 {
     public class Program
     {
         public static void Main()
         {
             MatrixGraph graph = new MatrixGraph();
 
             graph.Build();
 
             var edges = graph.Kruskal();
 
             foreach (var edge in edges)
             {
                 Console.WriteLine("({0},{1})({2})", edge.startEdge, edge.endEdge, edge.weight);
             }
 
             Console.Read();
         }
     }
 
     #region 定义矩阵节点
     /// <summary>
     /// 定义矩阵节点
     /// </summary>
     public class MatrixGraph
     {
         Graph graph = new Graph();
 
         PriorityQueue<Edge> queue;
 
         DisjointSet<int> set;
 
         public class Graph
         {
             /// <summary>
             /// 顶点信息
             /// </summary>
             public int[] vertexs;
 
             /// <summary>
             /// 边的条数
             /// </summary>
             public int[,] edges;
 
             /// <summary>
             /// 顶点个数
             /// </summary>
             public int vertexsNum;
 
             /// <summary>
             /// 边的个数
             /// </summary>
             public int edgesNum;
         }
 
         #region 矩阵的构建
         /// <summary>
         /// 矩阵的构建
         /// </summary>
         public void Build()
         {
             //顶点数
             graph.vertexsNum = 6;
 
             //边数
             graph.edgesNum = 8;
 
             graph.vertexs = new int[graph.vertexsNum];
 
             graph.edges = new int[graph.vertexsNum, graph.vertexsNum];
 
             //构建二维数组
             for (int i = 0; i < graph.vertexsNum; i++)
             {
                 //顶点
                 graph.vertexs[i] = i;
 
                 for (int j = 0; j < graph.vertexsNum; j++)
                 {
                     graph.edges[i, j] = int.MaxValue;
                 }
             }
 
             graph.edges[0, 1] = graph.edges[1, 0] = 80;
             graph.edges[0, 3] = graph.edges[3, 0] = 100;
             graph.edges[0, 5] = graph.edges[5, 0] = 20;
             graph.edges[1, 2] = graph.edges[2, 1] = 90;
             graph.edges[2, 5] = graph.edges[5, 2] = 70;
             graph.edges[4, 5] = graph.edges[5, 4] = 40;
             graph.edges[3, 4] = graph.edges[4, 3] = 60;
             graph.edges[2, 3] = graph.edges[3, 2] = 10;

             //优先队列,存放树中的边
             queue = new PriorityQueue<Edge>();
 
             //并查集
             set = new DisjointSet<int>(graph.vertexs);
 
             //将对角线读入到优先队列
             for (int i = 0; i < graph.vertexsNum; i++)
             {
                 for (int j = i; j < graph.vertexsNum; j++)
                 {
                     //说明该边有权重
                     if (graph.edges[i, j] != int.MaxValue)
                     {
                         queue.Eequeue(new Edge()
                         {
                             startEdge = i,
                             endEdge = j,
                             weight = graph.edges[i, j]
                         }, graph.edges[i, j]);
                     }
                 }
             }
         }
         #endregion
 
         #region 边的信息
         /// <summary>
         /// 边的信息
         /// </summary>
         public class Edge
         {
             //开始边
             public int startEdge;
 
             //结束边
             public int endEdge;
 
             //权重
             public int weight;
         }
         #endregion
 
         #region Kruskal算法
         /// <summary>
         /// Kruskal算法
         /// </summary>
         public List<Edge> Kruskal()
         {
             //最后收集到的最小生成树的边
             List<Edge> list = new List<Edge>();
 
             //循环队列
             while (queue.Count() > 0)
             {
                 var edge = queue.Dequeue();
 
                 //如果该两点是同一个集合,则剔除该集合
                 if (set.IsSameSet(edge.t.startEdge, edge.t.endEdge))
                     continue;
 
                 list.Add(edge.t);
 
                 //然后将startEdge 和 endEdge Union起来,表示一个集合
                 set.Union(edge.t.startEdge, edge.t.endEdge);
 
                 //如果n个节点有n-1边的时候,此时生成树已经构建完毕,提前退出
                 if (list.Count == graph.vertexsNum - 1)
                     break;
             }
 
             return list;
         }
         #endregion
     }
     #endregion
 }

并查集:

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 
 namespace ConsoleApplication2
 {
     /// <summary>
     /// 并查集
     /// </summary>
     public class DisjointSet<T> where T : IComparable
     {
         #region 树节点
         /// <summary>
         /// 树节点
         /// </summary>
         public class Node
         {
             /// <summary>
             /// 父节点
             /// </summary>
             public T parent;
 
             /// <summary>
             /// 节点的秩
             /// </summary>
             public int rank;
         }
         #endregion
 
         Dictionary<T, Node> dic = new Dictionary<T, Node>();
 
         public DisjointSet(T[] c)
         {
             Init(c);
         }
 
         #region 做单一集合的初始化操作
         /// <summary>
         /// 做单一集合的初始化操作
         /// </summary>
         public void Init(T[] c)
         {
             //默认的不想交集合的父节点指向自己
             for (int i = 0; i < c.Length; i++)
             {
                 dic.Add(c[i], new Node()
                 {
                     parent = c[i],
                     rank = 0
                 });
             }
         }
         #endregion
 
         #region 判断两元素是否属于同一个集合
         /// <summary>
         /// 判断两元素是否属于同一个集合
         /// </summary>
         /// <param name="root1"></param>
         /// <param name="root2"></param>
         /// <returns></returns>
         public bool IsSameSet(T root1, T root2)
         {
             return Find(root1).CompareTo(Find(root2)) == 0;
         }
         #endregion
 
         #region  查找x所属的集合
         /// <summary>
         /// 查找x所属的集合
         /// </summary>
         /// <param name="x"></param>
         /// <returns></returns>
         public T Find(T x)
         {
             //如果相等,则说明已经到根节点了,返回根节点元素
             if (dic[x].parent.CompareTo(x) == 0)
                 return x;
 
             //路径压缩(回溯的时候赋值,最终的值就是上面返回的"x",也就是一条路径上全部被修改了)
             return dic[x].parent = Find(dic[x].parent);
         }
         #endregion
 
         #region 合并两个不相交集合
         /// <summary>
         /// 合并两个不相交集合
         /// </summary>
         /// <param name="root1"></param>
         /// <param name="root2"></param>
         /// <returns></returns>
         public void Union(T root1, T root2)
         {
             T x1 = Find(root1);
             T y1 = Find(root2);
 
             //如果根节点相同则说明是同一个集合
             if (x1.CompareTo(y1) == 0)
                 return;
 
             //说明左集合的深度 < 右集合
             if (dic[x1].rank < dic[y1].rank)
             {
                 //将左集合指向右集合
                 dic[x1].parent = y1;
             }
             else
             {
                 //如果 秩 相等,则将 y1 并入到 x1 中,并将x1++
                 if (dic[x1].rank == dic[y1].rank)
                     dic[x1].rank++;
 
                 dic[y1].parent = x1;
             }
         }
         #endregion
     }
 }

优先队列:

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 using System.Diagnostics;
 using System.Threading;
 using System.IO;
 
 namespace ConsoleApplication2
 {
     public class PriorityQueue<T> where T : class
     {
         /// <summary>
         /// 定义一个数组来存放节点
         /// </summary>
         private List<HeapNode> nodeList = new List<HeapNode>();
 
         #region 堆节点定义
         /// <summary>
         /// 堆节点定义
         /// </summary>
         public class HeapNode
         {
             /// <summary>
             /// 实体数据
             /// </summary>
             public T t { get; set; }
 
             /// <summary>
             /// 优先级别 1-10个级别 (优先级别递增)
             /// </summary>
             public int level { get; set; }
 
             public HeapNode(T t, int level)
             {
                 this.t = t;
                 this.level = level;
             }
 
             public HeapNode() { }
         }
         #endregion
 
         #region  添加操作
         /// <summary>
         /// 添加操作
         /// </summary>
         public void Eequeue(T t, int level = 1)
         {
             //将当前节点追加到堆尾
             nodeList.Add(new HeapNode(t, level));
 
             //如果只有一个节点,则不需要进行筛操作
             if (nodeList.Count == 1)
                 return;
 
             //获取最后一个非叶子节点
             int parent = nodeList.Count / 2 - 1;
 
             //堆调整
             UpHeapAdjust(nodeList, parent);
         }
         #endregion
 
         #region 对堆进行上滤操作,使得满足堆性质
         /// <summary>
         /// 对堆进行上滤操作,使得满足堆性质
         /// </summary>
         /// <param name="nodeList"></param>
         /// <param name="index">非叶子节点的之后指针(这里要注意:我们
         /// 的筛操作时针对非叶节点的)
         /// </param>
         public void UpHeapAdjust(List<HeapNode> nodeList, int parent)
         {
             while (parent >= 0)
             {
                 //当前index节点的左孩子
                 var left = 2 * parent + 1;
 
                 //当前index节点的右孩子
                 var right = left + 1;
 
                 //parent子节点中最大的孩子节点,方便于parent进行比较
                 //默认为left节点
                 var min = left;
 
                 //判断当前节点是否有右孩子
                 if (right < nodeList.Count)
                 {
                     //判断parent要比较的最大子节点
                     min = nodeList[left].level < nodeList[right].level ? left : right;
                 }
 
                 //如果parent节点大于它的某个子节点的话,此时筛操作
                 if (nodeList[parent].level > nodeList[min].level)
                 {
                     //子节点和父节点进行交换操作
                     var temp = nodeList[parent];
                     nodeList[parent] = nodeList[min];
                     nodeList[min] = temp;
 
                     //继续进行更上一层的过滤
                     parent = (int)Math.Ceiling(parent / 2d) - 1;
                 }
                 else
                 {
                     break;
                 }
             }
         }
         #endregion
 
         #region 优先队列的出队操作
         /// <summary>
         /// 优先队列的出队操作
         /// </summary>
         /// <returns></returns>
         public HeapNode Dequeue()
         {
             if (nodeList.Count == 0)
                 return null;
 
             //出队列操作,弹出数据头元素
             var pop = nodeList[0];
 
             //用尾元素填充头元素
             nodeList[0] = nodeList[nodeList.Count - 1];
 
             //删除尾节点
             nodeList.RemoveAt(nodeList.Count - 1);
 
             //然后从根节点下滤堆
             DownHeapAdjust(nodeList, 0);
 
             return pop;
         }
         #endregion
 
         #region  对堆进行下滤操作,使得满足堆性质
         /// <summary>
         /// 对堆进行下滤操作,使得满足堆性质
         /// </summary>
         /// <param name="nodeList"></param>
         /// <param name="index">非叶子节点的之后指针(这里要注意:我们
         /// 的筛操作时针对非叶节点的)
         /// </param>
         public void DownHeapAdjust(List<HeapNode> nodeList, int parent)
         {
             while (2 * parent + 1 < nodeList.Count)
             {
                 //当前index节点的左孩子
                 var left = 2 * parent + 1;
 
                 //当前index节点的右孩子
                 var right = left + 1;
 
                 //parent子节点中最大的孩子节点,方便于parent进行比较
                 //默认为left节点
                 var min = left;
 
                 //判断当前节点是否有右孩子
                 if (right < nodeList.Count)
                 {
                     //判断parent要比较的最大子节点
                     min = nodeList[left].level < nodeList[right].level ? left : right;
                 }
 
                 //如果parent节点小于它的某个子节点的话,此时筛操作
                 if (nodeList[parent].level > nodeList[min].level)
                 {
                     //子节点和父节点进行交换操作
                     var temp = nodeList[parent];
                     nodeList[parent] = nodeList[min];
                     nodeList[min] = temp;
 
                     //继续进行更下一层的过滤
                     parent = min;
                 }
                 else
                 {
                     break;
                 }
             }
         }
         #endregion
 
         #region 获取元素并下降到指定的level级别
         /// <summary>
         /// 获取元素并下降到指定的level级别
         /// </summary>
         /// <returns></returns>
         public HeapNode GetAndDownPriority(int level)
         {
             if (nodeList.Count == 0)
                 return null;
 
             //获取头元素
             var pop = nodeList[0];
 
             //设置指定优先级(如果为 MinValue 则为 -- 操作)
             nodeList[0].level = level == int.MinValue ? --nodeList[0].level : level;
 
             //下滤堆
             DownHeapAdjust(nodeList, 0);
 
             return nodeList[0];
         }
         #endregion
 
         #region 获取元素并下降优先级
         /// <summary>
         /// 获取元素并下降优先级
         /// </summary>
         /// <returns></returns>
         public HeapNode GetAndDownPriority()
         {
             //下降一个优先级
             return GetAndDownPriority(int.MinValue);
         }
         #endregion
 
         #region 返回当前优先队列中的元素个数
         /// <summary>
         /// 返回当前优先队列中的元素个数
         /// </summary>
         /// <returns></returns>
         public int Count()
         {
             return nodeList.Count;
         }
         #endregion
     }
 }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1249218.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SOAP 协议和 HTTP 协议:深入解读与对比

SOAP 和 HTTP 协议 SOAP 协议 SOAP&#xff08; Simple Object Access Protocol&#xff09;是一种用于在节点之间交换结构化数据的网络协议。它使用XML格式来传输消息。它在 HTML 和 SMTP 等应用层协议的基础上进行标记和传输。SOAP 允许进程在整个平台、语言和操作系统中进…

华硕灵耀XPro(UX7602ZM)原装Win11系统恢复安装教程方法

华硕灵耀XPro(UX7602ZM)原装Win11系统恢复安装教程方法&#xff1a; 第一步&#xff1a;需要自备华硕6个底包工厂安装包&#xff08;EDN.KIT.OFS.SWP.HDI.TLK&#xff09;或者自己备份的iso/esd/wim等镜像恢复 支持系列&#xff1a; 灵耀系列原装系统 无畏系列原装系统 枪…

基于 STM32Cube.AI 的嵌入式人脸识别算法实现

本文介绍了如何使用 STM32Cube.AI 工具开发嵌入式人脸识别算法。首先&#xff0c;我们将简要介绍 STM32Cube.AI 工具和 STM32F系列单片机的特点。接下来&#xff0c;我们将详细讨论如何使用 STM32Cube.AI 工具链和相关库来进行人脸识别算法的开发和优化。最后&#xff0c;我们提…

【matlab程序】matlab使用箭头在图像上标注

【matlab程序】matlab使用箭头在图像上标注 clear;clc;close all;x0:1/10000:2*pi; ysin(x); figure plot(x,y,LineWidth,2) x_begin 1; x_end 2; y_begin 0; y_end 0.2;annotation(arrow,XY2Norm(X,[x_begin,x_end]),XY2Norm(Y,[y_begin,y_end]),LineWidth,2,Color,r); …

HarmonyOS ArkTS 给应用添加通知和提醒(十二)

简介 随着生活节奏的加快&#xff0c;我们有时会忘记一些重要的事情或日子&#xff0c;所以提醒功能必不可少。应用可能需要在指定的时刻&#xff0c;向用户发送一些业务提醒通知。例如购物类应用&#xff0c;希望在指定时间点提醒用户有优惠活动。为满足此类业务诉求&#xf…

数字图像处理(实践篇)二 画出图像中目标的轮廓

目录 一 涉及的OpenCV函数 二 代码 三 效果图 一 涉及的OpenCV函数 contours, hierarchy cv2.findContours(image, mode, method[, contours[, hierarchy[, offset ]]]) image&#xff1a;源图像。mode&#xff1a;轮廓的检索方式。cv2.RETR_EXTERNAL&#xff08;只检测…

Tars框架 Tars-Go 学习

Tars 框架安装 网上安装教程比较多&#xff0c;官方可以参数这个 TARS官方文档 (tarsyun.com) 本文主要介绍部署应用。 安装完成后Tars 界面 增加应用amc 部署申请 amc.GoTestServer.GoTestObj 名称不知道的可以参考自己创建的app config 点击刷新可以看到自己部署的应用 服…

npm ERR! node-sass@4.13.0 postinstall: `node scripts/build.js`

npm ERR! node-sass4.13.0 postinstall: node scripts/build.js npm config set sass_binary_sitehttps://npm.taobao.org/mirrors/node-sass npm install npm run dev Microsoft Windows [版本 10.0.19045.2965] (c) Microsoft Corporation。保留所有权利。C:\Users\Administr…

4.操作系统常见面试题(2)

3.4 虚拟内存 直接使⽤物理内存会产⽣⼀些问题 1. 内存空间利⽤率的问题&#xff1a;各个进程对内存的使⽤会导致内存碎⽚化&#xff0c;当要⽤ malloc 分配⼀块很⼤的内存空间时&#xff0c;可能会出现虽然有⾜够多的空闲物理内存&#xff0c;却没有⾜够⼤的连续空闲内存这种…

org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder

密码&#xff0c;加密&#xff0c;解密 spring-security-crypto-5.7.3.jar /** Copyright 2002-2011 the original author or authors.** Licensed under the Apache License, Version 2.0 (the "License");* you may not use this file except in compliance with t…

基于 STM32F7 和神经网络的实时人脸特征提取与匹配算法实现

本文讨论了如何使用 STM32F7 和神经网络模型来实现实时人脸特征提取与匹配算法。首先介绍了 STM32F7 的硬件和软件特点&#xff0c;然后讨论了人脸特征提取和匹配算法的基本原理。接下来&#xff0c;我们将重点讨论如何在 STM32F7 上实现基于神经网络的人脸特征提取与匹配算法&…

基于官方YOLOv4开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】

本文是关于基于YOLOv4开发构建目标检测模型的超详细实战教程&#xff0c;超详细实战教程相关的博文在前文有相应的系列&#xff0c;感兴趣的话可以自行移步阅读即可&#xff1a;《基于yolov7开发实践实例分割模型超详细教程》 《YOLOv7基于自己的数据集从零构建模型完整训练、…

Node.js入门指南(三)

目录 Node.js 模块化 介绍 模块暴露数据 导入模块 导入模块的基本流程 CommonJS 规范 包管理工具 介绍 npm cnpm yarn nvm的使用 我们上一篇文章介绍了Node.js中的http模块&#xff0c;这篇文章主要介绍Node.js的模块化&#xff0c;包管理工具以及nvm的使用。 Node…

微机原理_3

一、单项选择题(本大题共15小题,每小题3分,共45分。在每小题给出的四个备选项中,选出一个正确的答案,请将选定的答案填涂在答题纸的相应位置上。) 在 8086 微机系统中&#xff0c;完成对指令译码操作功能的部件是&#xff08;)。 A. EU B. BIU C. SRAM D. DRAM 使计算机执行某…

迎接“全全闪”时代 XSKY星辰天合发布星海架构和星飞产品

11 月 17 日消息&#xff0c;北京市星辰天合科技股份有限公司&#xff08;简称&#xff1a;XSKY星辰天合&#xff09;在北京首钢园举办了主题为“星星之火”的 XSKY 星海全闪架构暨星飞存储发布会。 &#xff08;图注&#xff1a;XSKY星辰天合 CEO 胥昕&#xff09; XSKY星辰天…

【Redis】前言--介绍redis的全局系统观

一.前言 学习是要形成自己的网状知识以及知识架构图&#xff0c;要不最终都还是碎片化的知识&#xff0c;不能达到提升的目的&#xff0c;只有掌握了全貌的知识才是全解&#xff0c;要不只是一知半解。这章会介绍redis的系统架构图&#xff0c;帮助认识redis的设计是什么样的&a…

80C51单片机----数据传送类指令

目录 一.一般传送指令&#xff0c;即mov指令 1.16位传送&#xff08;仅1条&#xff09; 2.8位传送 &#xff08;1&#xff09;目的字节为A&#xff08;累加器&#xff09; &#xff08;2&#xff09;目的字节为Rn(工作寄存器) &#xff08;3&#xff09;目的字节为direct…

pulseaudio是如何测试出音频延迟的

通常专业的音频设备生产厂商都有专业的设备来测试精确的音频链路延时。 那么没有专业设备怎么测试出音频延迟呢?如下图,我们可以看到pulseaudio可以测试出硬件音频延迟。 那么,他是怎么测试出硬件延迟的呢?他的理论依据是什么呢?接下来我带大伙一起探索一下。 /*占位…

【maven】【IDEA】idea中使用maven编译项目,报错java: 错误: 找不到符号 【2】

idea中使用maven编译项目,报错java: 错误: 找不到符号 错误状况展示: 如果报这种错,是因为项目中真的找不到报错的方法或者枚举 字段之类的,但实际是 : 点击 File Path

人工智能-注意力机制之注意力汇聚:Nadaraya-Watson 核回归

查询&#xff08;自主提示&#xff09;和键&#xff08;非自主提示&#xff09;之间的交互形成了注意力汇聚&#xff1b; 注意力汇聚有选择地聚合了值&#xff08;感官输入&#xff09;以生成最终的输出。 本节将介绍注意力汇聚的更多细节&#xff0c; 以便从宏观上了解注意力机…