STM32 寄存器配置笔记——USART配置中断接收乒乓缓存处理

news2024/11/17 6:01:58

一、概述

       本文主要介绍如何配置USART接收中断,使用乒乓缓存的设计接收数据并将其回显在PC 串口工具上。以stm32f10为例,配置USART1 9600波特率。具体配置参考上一章节STM32 寄存器配置笔记——USART配置 打印。

        乒乓缓存的设计应用场景:当后面的处理单元在工作期间,前面的 buffer 的内容不能被释放。或者,在处理单元工作期间, buffer 的特定地址的内容不止被访问一次。优点是相比全部写完再读的方式,可以节约读写时序。

二、中断优先级


       STM32 的中断向量具有两个属性,一个为抢占属性,另一个为响应属性,其属性编号越小,表明它的优先级别越高。即抢占优先级和响应优先级。

抢占
抢占,是指打断其他中断的属性,即因为具有这个属性会出现嵌套中断(在执行中断服务函数A 的过程中被中断B 打断,执行完中断服务函数B 再继续执行中断服务函数A),抢占属性由NVIC_IRQChannelPreemptionPriority 的参数配置。

响应
响应属性则应用在抢占属性相同的情况下,当两个中断向量的抢占优先级相同时,如果两个中断同时到达, 则先处理响应优先级高的中断, 响应属性由NVIC_IRQChannelSubPriority 参数配置。
 

二、配置流程

        1)使能RXNE中断

        接收缓冲区非空中断使能,通过MY_NVIC_init函数配置中断的抢占优先级和响应优先级为3(这里可以随意配置本章重点不在这)。最后一个参数表示分组为2。即有2位用来表示抢占优先级,2位用来表示响应优先级。

    USART1->CR1 |= 1 << 5;                                // enable RXNE interrupt 
	MY_NVIC_Init(3,3,USART1_IRQn,2);                      // 2bit PreemptionPriority 3 2bit SubPriority 3

        2)编写串口中断函数

        USART1_IRQHandler是在启动文件里定义的只要有串口中断便会跑进来。查询状态寄存器USART_SR的RXNE位为1则表示收到数据可以读出。此时从USART_DR寄存器读取数据。

      三、乒乓缓存设计

         1)数据结构定义

typedef struct
{
    u8 USART_RX_BUF[USART_REC_LEN];
	u16 len;
} USART_DATA;

typedef struct
{
   USART_DATA stUartFifo[2];
   u8 curRecFifo;
} USART_HANDLE;

static USART_DATA *p_cur_Usart1_Handle = NULL;
static USART_DATA *p_cur_Data_ProcessingHandle = NULL;
static USART_HANDLE g_Usart1Handle;

uin16 needPro = 0;

        2)乒乓缓存初始化 

void init_usart_handle(void)
{
	memset((u8*)&g_Usart1Handle, 0, sizeof(USART_HANDLE));
    p_cur_Usart1_Handle = &g_Usart1Handle.stUartFifo[0];
}

        3)乒乓缓存接收

void USART1_IRQHandler(void)
{
    if(USART1->SR&(1<<5))
	{
		p_cur_Usart1_Handle->USART_RX_BUF[p_cur_Usart1_Handle->len++] = USART1->DR;
	}
}

         4)乒乓缓存切换

        这里是以每收到一帧完整帧的数据都是以0x0d 0x0a结尾的数据为例。收到一帧完整帧将当前乒乓缓存A切换为处理,乒乓缓存B切换为接收。

void change_curFifo(void)
{
    u16 len = p_cur_Usart1_Handle->len;
	if (len >= 2)
	{
		if (p_cur_Usart1_Handle->USART_RX_BUF[len - 2] == 0x0d 
			&& p_cur_Usart1_Handle->USART_RX_BUF[len - 1] == 0x0a)
		{
			printf("curFifo:%d len:%d\r\n", g_Usart1Handle.curRecFifo, len);
			p_cur_Data_ProcessingHandle = p_cur_Usart1_Handle;
			g_Usart1Handle.curRecFifo++;
			p_cur_Usart1_Handle = &g_Usart1Handle.stUartFifo[g_Usart1Handle.curRecFifo % 2];
			p_cur_Usart1_Handle->len = 0;
            needPro = 1;
		}

	}
}

        5)乒乓缓存处理

        打印接收内容。

void data_processing(void)
{
    if (needPro)
	{
        needPro = 0;
		p_cur_Data_ProcessingHandle->USART_RX_BUF[p_cur_Data_ProcessingHandle->len] = 0;
	    printf("func:%s dat:%s\r\n", __func__, p_cur_Data_ProcessingHandle->USART_RX_BUF);
	}
}

      6)调用如下

      主循环一直轮询是否需要切换乒乓缓存以及是否存在数据待处理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1247420.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

经典的回溯算法题leetcode棋盘问题思路代码详解

目录 棋盘问题 leetcode51题.N皇后 对回溯算法感兴趣的朋友也可以多多支持一下我的其他文章。 回溯算法详解-CSDN博客 经典的回溯算法题leetcode组合问题整理及思路代码详解-CSDN博客 经典的回溯算法题leetcode子集问题思路代码详解-CSDN博客 经典的回溯算法题leetcode全…

C++类与对象(5)—流运算符重载、const、取地址

目录 一、流输出 1、实现单个输出 2、实现连续输出 二、流输入 总结&#xff1a; 三、const修饰 四、取地址 .取地址及const取地址操作符重载 五、[ ]运算符重载 一、流输出 1、实现单个输出 创建一个日期类。 class Date { public:Date(int year 1, int month 1,…

【VSCode】自定义转换大小写快捷键

文章目录 VSCode 是没有可以直接转换字母大小写的快捷键的&#xff0c;但是可以通过设置去定义 点击左下角设置按钮&#xff0c;并选择键盘快捷方式 在快捷方式里面搜索写&#xff0c;就能找到&#xff1a; 选择要设置的快捷键&#xff0c;并点击左侧的号 在键盘上按住你想设置…

3D卷积的理解

卷积核不仅需要在高宽这两个维度上进行滑动&#xff0c;还需要在时间维度上进行滑动

升级python后sudo apt-get update报错

sudo apt-get update 报错&#xff1a; sh: /usr/lib/cnf-update-db: /usr/bin/python3.7.5: bad interpreter: No such file or directory Reading package lists... Done E: Problem executing scripts APT::Update::Post-Invoke-Success if /usr/bin/test -w /var/lib/c…

分块矩阵知识点整理:

1.分块方法&#xff1a;横竖线不能拐弯&#xff0c;思想为将矩阵分块看作向量计算 2.标准型 不一定是方的 特殊性&#xff1a;经过分块后会出现单位矩阵和0矩阵 3.分块矩阵的运算: 1.加减乘的运算与向量运算相同 4.分块矩阵求转置&#xff1a; 1.将子块看作普通元素求转置 2…

【文献分享】DynaSLAM:你见过动态物体修补效果这么好的SLAM吗?

论文题目&#xff1a;DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes 中文题目&#xff1a;DynaSLAM&#xff1a;动态场景中的跟踪、建图和图像修复 作者&#xff1a;Berta Bescos等 论文链接&#xff1a;https://arxiv.org/pdf/1806.05620.pdf 1 笔者个人…

JavaScript 的双问号 和 ?. 的含义和作用

1、?. &#xff08;可选链运算符&#xff09; ?. 表示&#xff1a;可选链操作符( ?. )允许读取位于连接对象链深处的属性的值&#xff0c;而不必明确验证链中的每 个引用是否有效。操作符的功能类似于 . 链式操作符&#xff0c;不同之处在于&#xff0c;在引用为空(null 或…

详细解答T-SNE程序中from sklearn.manifold import TSNE的数据设置,包括输入数据,绘制颜色的参数设置,代码复制可用!!

文章目录 前言——TSNE是t-Distributed Stochastic Neighbor Embedding的缩写1、可运行的T-SNE程序2. 实验结果3、针对上述程序我们详细分析T-SNE的使用方法3.1 加载数据3.2 TSNE降维3.3 绘制点3.4 关于颜色设置&#xff0c;颜色使用的标签数据的说明cy 总结 前言——TSNE是t-D…

Apollo接入配置中心 -- 源码分析之如何获取配置

全文参考&#xff1a;https://mp.weixin.qq.com/s/G5BV5BIdOtB3LlxNsr4ZDQ https://blog.csdn.net/crystonesc/article/details/106630412 https://www.cnblogs.com/deepSleeping/p/14565774.html 背景&#xff1a;近期在接入行内配置中心&#xff0c;因此对配置的加载接入有了…

浅析三相异步电动机控制的电气保护

安科瑞 华楠 摘 要&#xff1a;要求三相异步电动机的控制系统不仅要保证电机正常启动和运行&#xff0c;完成制动操作&#xff0c;还要通过相关保护措施维护电动机的安全使用。基于此&#xff0c;本文以电动机电气保护作为研究对象&#xff0c;结合三相异步电动机的机械特点&…

electerm 跨平台的终端 /ssh/sftp 客户端

文章目录 electerm功能特性主题配色 electerm 每个程序员基本都离开SSH链接工具,目前市场上好用的基本都是收费的 给大家推荐一款国人开发的开源链接工具https://github.com/electerm/electerm 到目前为止star已经9.5K了,非常受欢迎 功能特性 支持ssh,telnet,serialport,本地和…

满满干货!搭建智能视频监控系统如何挑选前端设备?

在此前的文章中&#xff0c;小编也和大家讨论过如何选择适合场景需求又性价比高的摄像头。除了摄像头以外&#xff0c;智能监控系统的组成也少不了前端设备&#xff0c;今天就给大家介绍一下几大前端设备的区别与应用场景吧。 在智能视频监控中&#xff0c;前端设备一般分为四类…

功率放大器在介电弹性体测试中的应用案例

介电弹性体作为一种具有高介电常数的材料&#xff0c;近年来越来越受到人们的关注。由于其具有许多独特的性质&#xff0c;如高灵敏度、快速响应以及出色的循环稳定性&#xff0c;使其在许多领域都有广泛的应用&#xff0c;如电子皮肤、传感器和执行器等。在介电弹性体的测试中…

rocky8.9配置K8S集群kubernetes,centos同理

rocky8.9配置K8S集群 节点主机名IP地址mastertang1192.168.211.101node1tang2192.168.211.102node2tang3192.168.211.103 1&#xff09;准备工作 全部主机都配置静态ip vi /etc/sysconfig/network-scriptsTYPEEthernet PROXY_METHODnone BROWSER_ONLYno BOOTPROTOstatic DE…

AI智能识别如何应用于单病种上报?

何为AI? AI是人工智能&#xff08;Artificial Intelligence&#xff09;的英文缩写&#xff0c;它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支&#xff0c;该领域的研究包括机器人、语言识别…

C++算法 —— 贪心(3)

文章目录 1、买卖股票的最佳时机2、买卖股票的最佳时机Ⅱ3、K次取反后最大化的数组和4、按身高排序5、优势洗牌6、最长回文串7、增减字符串匹配 1、买卖股票的最佳时机 121. 买卖股票的最佳时机 这里最容易想到的就是暴力枚举&#xff0c;两层for循环&#xff0c;i 0&#xf…

TFA-Net

TFA SCA means ‘Self-Context Aggregation’ 作者未提供代码

JVM中如何实现垃圾收集

Java虚拟机&#xff08;JVM&#xff09;使用垃圾收集器&#xff08;Garbage Collector&#xff09;来管理内存&#xff0c;清理不再使用的对象以释放内存空间。垃圾收集的主要目标是自动化内存管理&#xff0c;使开发人员无需显式地释放不再使用的内存&#xff0c;从而降低了内…