【深度学习】基于深度学习的超分辨率图像技术一览

news2025/1/13 15:44:20

超分辨率(Super-Resolution)即通过硬件或软件的方法提高原有图像的分辨率,图像超分辨率是计算机视觉和图像处理领域一个非常重要的研究问题,在医疗图像分析、生物特征识别、视频监控与安全等实际场景中有着广泛的应用。

SR取得了显著进步。一般可以将现有的SR技术研究大致分为三大类:监督SR,无监督SR和特定领域SR(人脸)。

先说监督SR。

如今已经有各种深度学习的超分辨率模型。这些模型依赖于有监督的超分辨率,即用LR图像和相应的基础事实(GT)HR图像训练。虽然这些模型之间的差异非常大,但它们本质上是一组组件的组合,例如模型框架,上采样方法,网络设计和学习策略等。从这个角度来看,研究人员将这些组件组合起来构建一个用于拟合特定任务的集成SR模型。由于图像超分辨率是一个病态问题,如何进行上采样(即从低分辨率产生高分辨率)是关键问题。基于采用的上采样操作及其在模型中的位置,SR模型可归因于四种模型框架:预先采样SR,后上采样SR,渐进上采样SR和迭代上下采样SR,如图所示。

基于深度学习的超分辨率图像技术一览
基于深度学习的超分辨率图像技术一览

除了在模型中的位置之外,上采样操作如何实现它们也非常重要。为了克服插值法的缺点,并以端到端的方式学习上采样操作,转置卷积层(Transposed Convolution Layer)和亚像素层(Sub-pixel Layer)可以引入到超分辨率中。转置卷积层,即反卷积层,基于尺寸类似于卷积层输出的特征图来预测可能的输入。具体地说,它通过插入零值并执行卷积来扩展图像,从而提高了图像分辨率。为了简洁起见,以3×3内核执行2次上采样为例,如图所示。首先,输入扩展到原始大小的两倍,其中新添加的像素值被设置为0(b)。然后应用大小为3×3、步长1和填充1的内核卷积(c)。这样输入特征图实现因子为2的上采样,而感受野最多为2×2。

基于深度学习的超分辨率图像技术一览

由于转置卷积层可以以端到端的方式放大图像大小,同时保持与vanilla卷积兼容的连接模式,因此它被广泛用作SR模型的上采样层。然而,它很容易在每个轴上产生“不均匀重叠(uneven overlapping)”,并且在两个轴的乘法进一步产生了特有的不同幅度棋盘状图案,从而损害了SR性能。亚像素层也是端到端学习的上采样层,通过卷积生成多个通道然后重新整形,如图所示。首先卷积产生具有s2倍通道的输出,其中s是上采样因子(b)。假设输入大小为h×w×c,则输出大小为h×w×s2c。之后,执行整形(shuffle)操作产生大小为sh×sw×c的输出(c)。感受野大小可以达到3×3。

基于深度学习的超分辨率图像技术一览

由于端到端的上采样方式,亚像素层也被SR模型广泛使用。与转置卷积层相比,亚像素层的最大优势是具有较大的感知场,提供更多的上下文信息,能帮助生成更准确的细节。然而,亚像素层的感受野的分布是不均匀的,块状区域实际上共享相同的感受野,这可能导致在块边界附近的一些畸变。各种深度学习的模型已经被用于SR,如图所示。

基于深度学习的超分辨率图像技术一览

ResNet学习残差而不是彻底的映射,已被SR模型广泛采用,如上图(a)所示。其中,残差学习策略可以大致分为两种类型,即全局和局部残差学习。由于超分辨率是图像到图像的转换任务,其中输入图像与目标图像高度相关,全局残差学习仅学习两个图像之间的残差。在这种情况下,它避免学习从完整图像到另一个图像的复杂转换,而只需要学习残差图来恢复丢失的高频细节。由于大多数区域残差接近于零,模型的复杂性和学习难度都大大降低。这种方法在预上采样的SR框架普遍采用。局部残差学习类似于ResNet的残差学习,用于缓解不断增加的网络深度引起的退化问题并提高学习能力。实践中,上述方法都是通过快捷连接(通常有小常数因子的缩放)和逐元素加法操作实现的。区别在于,前者直接连接输入图像和输出图像,而后者通常在不同深度的网络中层之间添加多个快捷方式。• 递归学习递归学习(以递归方式多次应用相同模块)也被超分辨率采用,如上图 (b)所示。在实践中,递归学习固有地带来了消失(vanishing)或爆涨(exploding)梯度问题,因此残差学习和多信号监督等一些技术通常与递归学习相结合,以减轻这些问题。• 通道关注考虑到不同通道之间特征表征的相互依赖和作用,一种“挤压-激发(SAE,squeeze-and-excitation)”模块明确对通道相互依赖性建模,来提高表示能力,如上图(c)所示。其中用全局平均池化将每个输入通道压缩到通道描述子(即一个常数)中,然后将这些描述子馈送到两个全连接层产生通道尺度因子。基于通道乘法,用尺度因子重新缩放输入通道得到最终输出。• 致密连接致密连接在视觉任务中变得越来越流行。在致密块的每个层,所有前层的特征图用作输入,并且其自身特征图用作所有后续层的输入,在一个有l层致密块中带来l·(l - 1)/ 2个连接。致密连接,不仅有助于缓解梯度消失问题、增强信号的传播并促进特征重用,而且在连接之后采用小增长率(即致密块的通道数)和通道缩减来大大减少参数量。为了融合低级和高级特征以提供更丰富的信息来重建高质量的细节,致密连接被引入SR领域,如上图(d)所示。• 多路径学习多路径学习指模型存在多个路径传递特征,这些路径执行不同的操作以提供更好的建模功能。具体而言,它可以分为三种类型:全局法、局部法和特定尺度法。全局多路径学习是指用多个路径提取图像不同方面的特征。这些路径可以在传播中相互交叉,从而大大增强了特征提取的能力。本地多路径学习用新块进行多尺度特征提取,如上图(e)所示。该块采用不同内核大小的卷积同时提取特征,然后将输出连接起来并再次进行相同的操作。快捷方式通过逐元素添加来连接该块的输出和输入。通过这种局部多路径学习,SR模型可以更好地从多个尺度提取图像特征,进一步提高性能。特定尺度多路径学习共享模型的主要部分(即特征提取的中间部分),并分别在网络的开头和结尾附加特定尺度的预处理路径和上采样路径,如上图(f)所示。在训练期间,仅启用和更新与所选尺度对应的路径。这样大多数参数在不同尺度上共享。• 高级卷积卷积运算是深度神经网络的基础,改进卷积运算可获得更好的性能或更快的速度。这里给出两个方法:扩张卷积(Dilated Convolution)和群卷积(Group Convolution)。众所周知,上下文信息有助于在图像超分辨率生成逼真的细节。扩张卷积能将感受野增加两倍,最终实现更好的性能。群卷积以很少的性能损失可减少大量的参数和操作,如上图(g)所示。• 像素递归学习大多数SR模型认为这是一个与像素无关的任务,因此无法正确地确定生成像素之间的相互依赖性。在人注意力转移机制推动下,一种递推网络可依次发现参与的补丁并进行局部增强。以这种方式,模型能够根据每个图像自身特性自适应地个性化最佳搜索路径,从而充分利用图像全局的内依赖性(intra-dependence)。不过,需要长传播路径的递归过程,特别对超分辨率的HR图像,大大增加了计算成本和训练难度。• 金字塔池化金字塔池化模块更好地利用全局和局部的上下文信息,如上图(h)所示。具体地,对于尺寸为h×w×c的特征图,每个特征图被划分为M×M个区间,并经历全局平均池化产生M×M×c个输出。然后,执行1×1卷积输出压缩到一个单信道。之后,通过双线性插值将低维特征图上采样到与原始特征图相同的大小。使用不同的M,该模块可以有效地整合全局和局部的上下文信息。• 小波变换众所周知,小波变换(WT)是一种高效的图像表示,将图像信号分解为表示纹理细节的高频小波和包含全局拓扑信息的低频小波。将WT与基于深度学习的SR模型相结合,这样插值LR小波的子带作为输入,并预测相应HR子带的残差。WT和逆WT分别用于分解LR输入和重建HR输出。另外学习策略问题,涉及损失函数的设计(包括像素损失,内容损失,纹理损失,对抗损失和周期连续损失)、批处理归一化(BN)、课程学习(Curriculum Learning)和多信号监督(Multi-supervision)等等。

再说无监督SR。

现有的超分辨率工作主要集中在监督学习上,然而难以收集不同分辨率的相同场景的图像,因此通常通过对HR图像预定义退化来获得SR数据集中的LR图像。为了防止预定义退化带来的不利影响,无监督的超分辨率成为选择。在这种情况下,只提供非配对图像(HR或LR)用于训练,实际上得到的模型更可能应对实际场景中的SR问题。• 零击(zero shot)超分辨率单个图像内部的统计数据足以提供超分辨率所需的信息,所以零击超分辨率(ZSSR)在测试时训练小图像特定的SR网络进行无监督SR,而不是在大数据集上训练通用模型。具体来说,核估计方法直接从单个测试图像估计退化内核,并在测试图像上执行不同尺度因子的退化来构建小数据集。然后在该数据集上训练超分辨率的小CNN模型用于最终预测。ZSSR利用图像内部特定信息的跨尺度复现这一特点,对非理想条件下(非bi-cubic退化核获得的图像,受模糊、噪声和压缩畸变等影响)更接近现实世界场景的图像,比以前的方法性能提高一大截,同时在理想条件下(bi-cubic插值构建的图像),和以前方法结果差不多。尽管这样,由于需要在测试期间为每个图像训练单个网络,使得其测试时间远比其他SR模型长。• 弱监督SR为了在超分辨率中不引入预退化,弱监督学习的SR模型,即使用不成对的LR-HR图像,是一种方案。一些方法学习HR-LR退化模型并用于构建训练SR模型的数据集,而另外一些方法设计周期循环(cycle-in-cycle)网络同时学习LR-HR和HR-LR映射。由于预退化是次优的,从未配对的LR-HR数据集中学习退化是可行的。一种方法称为“两步法”:

  • 1)训练HR-LR 的GAN模型,用不成对的LR-HR图像学习退化;
  • 2)基于第一个GAN模型,使用成对的LR-HR图像训练LR- HR 的GAN模型执行SR。

对于HR到LR 的GAN模型,HR图像被馈送到生成器产生LR输出,不仅需要匹配HR图像缩小(平均池化)获得的LR图像,而且还要匹配真实LR图像的分布。训练之后,生成器作为退化模型生成LR-HR图像对。对于LR到HR 的GAN模型,生成器(即SR模型)将生成的LR图像作为输入并预测HR输出,不仅需要匹配相应的HR图像而且还匹配HR图像的分布 。在“两步法”中,无监督模型有效地提高了超分辨率真实世界LR图像的质量,比以前方法性能获得了很大改进。无监督SR的另一种方法是将LR空间和HR空间视为两个域,并使用周期循环结构学习彼此之间的映射。这种情况下,训练目的包括推送映射结果去匹配目标的域分布,并通过来回(round trip)映射使图像恢复。• 深度图像先验知识CNN结构在逆问题之前捕获大量的低级图像统计量,所以在执行SR之前可使用随机初始化的CNN作为手工先验知识。具体地讲,定义生成器网络,将随机向量z作为输入并尝试生成目标HR图像I。训练目标是网络找到一个Iˆ y,其下采样Iˆy与LR图像Ix相同。因为网络随机初始化,从未在数据集上进行过训练,所以唯一的先验知识是CNN结构本身。虽然这种方法的性能仍然比监督方法差很多,但远远超过传统的bicubic上采样。此外,表现出的CNN架构本身合理性,促使将深度学习方法与CNN结构或自相似性等先验知识相结合来提高超分辨率。

特定SR。

特定SR领域主要包括深度图、人脸图像、高光谱图像和视频等内容的SR应用。面部图像超分辨率,即面部幻觉(FH, face hallucination),通常可以帮助其他与面部相关的任务。与通用图像相比,面部图像具有更多与面部相关的结构化信息,因此将面部先验知识(例如,关键点,结构解析图和身份)结合到FH中是非常流行且有希望的方法。利用面部先验知识的最直接的方式是约束所生成的HR图像具有与基础事实(GT)的HR图像相同的面部相关信息。与全色图像(PAN,panchromatic images),即具有3个波段的RGB图像相比,有数百个波段的高光谱图像(HSI,hyperspectral images)提供了丰富的光谱特征并有助于各种视觉任务。然而,由于硬件限制,收集高质量的HSI比收集PAN更困难,收集的HSI分辨率要低得多。因此,超分辨率被引入该领域,研究人员倾向于将HR PAN和LR HSI结合起来预测HR HSI。就视频超分辨率而言,多个帧提供更多的场景信息,不仅有帧内空间依赖性而且有帧间时间依赖性(例如,运动、亮度和颜色变化)。大多数方法主要集中在更好地利用时空依赖性,包括显式运动补偿(例如,光流算法、基于学习的方法)和递归方法等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1246445.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

linux基础5:linux进程1(冯诺依曼体系结构+os管理+进程状态1)

冯诺依曼体系结构os管理 一.冯诺依曼体系结构:1.简单介绍(准备一)2.场景:1.程序的运行:2.登录qq发送消息: 3.为什么需要内存:1.简单的引入:2.计算机存储体系:3.内存的意义…

查询Greenplum的视图和存储过程,指定schema

查询视图 SELECT schemaname,viewname AS view_name, definition AS view_definition FROM pg_views WHERE schemaname dcf_user; 查询存储过程 SELECT a.proname ,a.prosrc ,b.rolname FROM pg_proc a left join pg_roles b on a.proowner b.oid where b.rolname dcf…

JSP EL 算数运算符逻辑运算符

除了 empty 我们这边还有一些基本的运算符 第一种 等等于 jsp代码如下 <% page contentType"text/html; charsetUTF-8" pageEncoding"UTF-8" %> <%request.setCharacterEncoding("UTF-8");%> <!DOCTYPE html> <html> …

DFS序和欧拉序的降维打击

1. DFS 序和时间戳 1.1 DFS 序 定义&#xff1a;树的每一个节点在深度优先遍历中进、出栈的时间序列。 如下树的 dfs 序就是[1,2,8,8,5,5,2,4,3,9,9,3,6,6,4,7,7,1]。 下图为生成DFS的过程。对于一棵树进行DFS序&#xff0c;除了进入当前节点时对此节点进行记录&#xff0c;…

儿童在线学习系统 宝宝云幼儿园服务微信小程序的设计与实现

综合运用所学的程序设计基础、数据结构、数据库原理及应用、高级语言程序设计、面向对象程序设计、软件需求分析与建模、软件设计与体系结构、软件测试等课程知识&#xff0c;设计开发一个较实用的应用系统。 通过该设计可以巩固并提高软件工程专业学生的软件需求分析、设计、开…

【Spring集成MyBatis】核心配置文件

文章目录 1. typeHandlers标签2. plugins标签通过PageHelper的API获取分页的信息 1. typeHandlers标签 可以重写类型处理器&#xff0c;或创建类型处理器来处理不支持/非标准的类型。选择性地将它映射到一个JDBC类型&#xff1a;如Java中的Date类型&#xff0c;将其存放到数据…

【CCF-PTA】第03届Scratch第02题 -- 计算天数

计算天数 【题目描述】 一年有 365 天还是有 366 天呢&#xff1f;要看这一年是不是闰年。有个计算方法可以帮助我们判断&#xff0c;那就是闰年能够除尽 4 但不能除尽 100 或者能够除尽 400 的年份。如果这一年是闰年&#xff0c;2 月份的天数就是 29 天。小明决定编写一个程…

OpenAI研发神秘“Q*”模型:科学家认输,AI赢了人类关键一战

图片来源&#xff1a;视觉中国 作者丨叶蓁 编辑丨康晓 出品丨深网腾讯新闻小满工作室 在山姆奥特曼&#xff08;Sam Altman&#xff09;被OpenAI前董事会突然罢免之前&#xff0c;数位研究人员向董事会发送了一封信&#xff0c;警告称他们发现了一种能够威胁到人类的强大人工…

命令执行总结

之前做了一大堆的题目 都没有进行总结 现在来总结一下命令执行 我遇到的内容 这里我打算按照过滤进行总结 依据我做过的题目 过滤system 下面是一些常见的命令执行内容 system() passthru() exec() shell_exec() popen() proc_open() pcntl_exec() 反引号 同shell_exec() …

2023年亚太杯数学建模A题水果采摘机器人的图像识别功能(matlab 部分代码)

对于1-4问针对的是附录1 中的数据 clc; close all; clear; % 图像文件夹路径 folder_path E:/新建文件夹/yatai/Attachment/Attachment 1/; % 图像文件列表 image_files dir(fullfile(folder_path, *.jpg)); % 假设所有图片都是jpg格式% 解析文件名中的数字&#xff0c;并转…

如果把数组对应的值放到对象的对应key对应的值中

开发中 遇到一个数组&#xff0c;需要把数组中的value放到一个对象中 对象的key对应到数组的name&#xff0c; 话不多说 &#xff0c;直接上代码 this.result.forEach(item > {this.screen[Object.keys(this.screen).find(e > e item.name)] item.value}) 思路是这…

堪比数据恢复大师软件推荐,恢复数据很简单!

“作为一个经常丢失数据的电脑用户来说&#xff0c;我觉得我非常需要一些简单有效的数据恢复方法。大家有什么比较靠谱的软件推荐吗&#xff1f;非常感谢&#xff01;” 在数字化时代&#xff0c;数据的存储是比较重要的。很多用户都会选择将重要的文件保存在电脑上。如果数据丢…

行业案例:如何打造高效内容团队

内容团队如何适应当下热点高频更新的时代&#xff1f;Zoho Projects项目管理软件能为内容团队带来什么&#xff1f;本文以真实用户案例为您详细解答&#xff01; 背景介绍&#xff1a; 该漫画团队已有十余年的奋斗历史&#xff0c;以原创漫画和绘本内容创作为主&#xff0c;出…

数据库实验五 数据库设计

数据库实验五 数据库设计 一、实验目的二、实验内容三、实验内容四、验证性实验五、设计性实验 一、实验目的 1.了解E-R图构成要素以及各要素图元。 2.掌握概念模型E-R图的绘制方法。 3.掌握概念模型向逻辑模型的转换原则和步骤。 4.运用sql编程实现 二、实验内容 1.选取一个…

风口下的危与机:如何抓住生成式AI黄金发展期?

回顾AI的发展历程&#xff0c;我们见证过几次重大突破&#xff0c;比如2012年ImageNet大赛的图像识别&#xff0c;2016年AlphaGo与李世石的围棋对决&#xff0c;这些进展都为AI的普及应用铺设了道路。而ChatGPT的出现&#xff0c;真正让AI作为一个通用的产品&#xff0c;走入大…

【SpringCloud】微服务的扩展性及其与 SOA 的区别

一、微服务的扩展性 由上一篇文章&#xff08;没看过的可点击传送阅读&#xff09;可知&#xff0c; 微服务具有极强的可扩展性&#xff0c;这些扩展性包含以下几个方面&#xff1a; 性能可扩展&#xff1a;性能无法完全实现线性扩展&#xff0c;但要尽量使用具有并发性和异步…

基于51单片机超声波测距汽车避障系统

**单片机设计介绍&#xff0c; 基于51单片机超声波测距汽车避障系统 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于51单片机的超声波测距汽车避障系统是一种用于帮助汽车避免碰撞和发生事故的设备&#xff0c;以下是一个基本…

H5(uniapp)中使用echarts

1,安装echarts npm install echarts 2&#xff0c;具体页面 <template><view class"container notice-list"><view><view class"aa" id"main" style"width: 500px; height: 400px;"></view></v…

PSP - 从头搭建 抗原类别 (GPCR) 的 蛋白质结构预测 项目流程

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/134595717 GPCRs&#xff08;G Protein-Coupled Receptors&#xff0c;G蛋白偶联受体&#xff09;&#xff0c;又称为7次跨膜受体&#xff0c;是细…