竞赛选题 题目:垃圾邮件(短信)分类 算法实现 机器学习 深度学习 开题

news2025/1/9 16:29:00

文章目录

  • 1 前言
  • 2 垃圾短信/邮件 分类算法 原理
    • 2.1 常用的分类器 - 贝叶斯分类器
  • 3 数据集介绍
  • 4 数据预处理
  • 5 特征提取
  • 6 训练分类器
  • 7 综合测试结果
  • 8 其他模型方法
  • 9 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于机器学习的垃圾邮件分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 垃圾短信/邮件 分类算法 原理

垃圾邮件内容往往是广告或者虚假信息,甚至是电脑病毒、情色、反动等不良信息,大量垃圾邮件的存在不仅会给人们带来困扰,还会造成网络资源的浪费;

网络舆情是社会舆情的一种表现形式,网络舆情具有形成迅速、影响力大和组织发动优势强等特点,网络舆情的好坏极大地影响着社会的稳定,通过提高舆情分析能力有效获取发布舆论的性质,避免负面舆论的不良影响是互联网面临的严肃课题。

将邮件分为垃圾邮件(有害信息)和正常邮件,网络舆论分为负面舆论(有害信息)和正面舆论,那么,无论是垃圾邮件过滤还是网络舆情分析,都可看作是短文本的二分类问题。

在这里插入图片描述

2.1 常用的分类器 - 贝叶斯分类器

贝叶斯算法解决概率论中的一个典型问题:一号箱子放有红色球和白色球各 20 个,二号箱子放油白色球 10 个,红色球 30
个。现在随机挑选一个箱子,取出来一个球的颜色是红色的,请问这个球来自一号箱子的概率是多少?

利用贝叶斯算法识别垃圾邮件基于同样道理,根据已经分类的基本信息获得一组特征值的概率(如:“茶叶”这个词出现在垃圾邮件中的概率和非垃圾邮件中的概率),就得到分类模型,然后对待处理信息提取特征值,结合分类模型,判断其分类。

贝叶斯公式:

P(B|A)=P(A|B)*P(B)/P(A)

P(B|A)=当条件 A 发生时,B 的概率是多少。代入:当球是红色时,来自一号箱的概率是多少?

P(A|B)=当选择一号箱时,取出红色球的概率。

P(B)=一号箱的概率。

P(A)=取出红球的概率。

代入垃圾邮件识别:

P(B|A)=当包含"茶叶"这个单词时,是垃圾邮件的概率是多少?

P(A|B)=当邮件是垃圾邮件时,包含“茶叶”这个单词的概率是多少?

P(B)=垃圾邮件总概率。

P(A)=“茶叶”在所有特征值中出现的概率。

在这里插入图片描述

3 数据集介绍

使用中文邮件数据集:丹成学长自己采集,通过爬虫以及人工筛选。

数据集“data” 文件夹中,包含,“full” 文件夹和 “delay” 文件夹。

“data” 文件夹里面包含多个二级文件夹,二级文件夹里面才是垃圾邮件文本,一个文本代表一份邮件。“full” 文件夹里有一个 index
文件,该文件记录的是各邮件文本的标签。

在这里插入图片描述

数据集可视化:

在这里插入图片描述

4 数据预处理

这一步将分别提取邮件样本和样本标签到一个单独文件中,顺便去掉邮件的非中文字符,将邮件分好词。

邮件大致内容如下图:

在这里插入图片描述

每一个邮件样本,除了邮件文本外,还包含其他信息,如发件人邮箱、收件人邮箱等。因为我是想把垃圾邮件分类简单地作为一个文本分类任务来解决,所以这里就忽略了这些信息。
用递归的方法读取所有目录里的邮件样本,用 jieba 分好词后写入到一个文本中,一行文本代表一个邮件样本:

import re
import jieba
import codecs
import os 
# 去掉非中文字符
def clean_str(string):
    string = re.sub(r"[^\u4e00-\u9fff]", " ", string)
    string = re.sub(r"\s{2,}", " ", string)
    return string.strip()

def get_data_in_a_file(original_path, save_path='all_email.txt'):
    files = os.listdir(original_path)
    for file in files:
        if os.path.isdir(original_path + '/' + file):
                get_data_in_a_file(original_path + '/' + file, save_path=save_path)
        else:
            email = ''
            # 注意要用 'ignore',不然会报错
            f = codecs.open(original_path + '/' + file, 'r', 'gbk', errors='ignore')
            # lines = f.readlines()
            for line in f:
                line = clean_str(line)
                email += line
            f.close()
            """
            发现在递归过程中使用 'a' 模式一个个写入文件比 在递归完后一次性用 'w' 模式写入文件快很多
            """
            f = open(save_path, 'a', encoding='utf8')
            email = [word for word in jieba.cut(email) if word.strip() != '']
            f.write(' '.join(email) + '\n')

print('Storing emails in a file ...')
get_data_in_a_file('data', save_path='all_email.txt')
print('Store emails finished !')

然后将样本标签写入单独的文件中,0 代表垃圾邮件,1 代表非垃圾邮件。代码如下:

def get_label_in_a_file(original_path, save_path='all_email.txt'):
    f = open(original_path, 'r')
    label_list = []
    for line in f:
        # spam
        if line[0] == 's':
            label_list.append('0')
        # ham
        elif line[0] == 'h':
            label_list.append('1')

    f = open(save_path, 'w', encoding='utf8')
    f.write('\n'.join(label_list))
    f.close()

print('Storing labels in a file ...')
get_label_in_a_file('index', save_path='label.txt')
print('Store labels finished !')

5 特征提取

将文本型数据转化为数值型数据,本文使用的是 TF-IDF 方法。

TF-IDF 是词频-逆向文档频率(Term-Frequency,Inverse Document Frequency)。公式如下:

在这里插入图片描述

在所有文档中,一个词的 IDF 是一样的,TF 是不一样的。在一个文档中,一个词的 TF 和 IDF
越高,说明该词在该文档中出现得多,在其他文档中出现得少。因此,该词对这个文档的重要性较高,可以用来区分这个文档。

在这里插入图片描述

import jieba
from sklearn.feature_extraction.text import TfidfVectorizer

def tokenizer_jieba(line):
    # 结巴分词
    return [li for li in jieba.cut(line) if li.strip() != '']

def tokenizer_space(line):
    # 按空格分词
    return [li for li in line.split() if li.strip() != '']

def get_data_tf_idf(email_file_name):
    # 邮件样本已经分好了词,词之间用空格隔开,所以 tokenizer=tokenizer_space
    vectoring = TfidfVectorizer(input='content', tokenizer=tokenizer_space, analyzer='word')
    content = open(email_file_name, 'r', encoding='utf8').readlines()
    x = vectoring.fit_transform(content)
    return x, vectoring

6 训练分类器

这里学长简单的给一个逻辑回归分类器的例子

from sklearn.linear_model import LogisticRegression
from sklearn import svm, ensemble, naive_bayes
from sklearn.model_selection import train_test_split
from sklearn import metrics
import numpy as np

if __name__ == "__main__":
    np.random.seed(1)
    email_file_name = 'all_email.txt'
    label_file_name = 'label.txt'
    x, vectoring = get_data_tf_idf(email_file_name)
    y = get_label_list(label_file_name)

    # print('x.shape : ', x.shape)
    # print('y.shape : ', y.shape)
    
    # 随机打乱所有样本
    index = np.arange(len(y))  
    np.random.shuffle(index)
    x = x[index]
    y = y[index]

    # 划分训练集和测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

    clf = svm.LinearSVC()
    # clf = LogisticRegression()
    # clf = ensemble.RandomForestClassifier()
    clf.fit(x_train, y_train)
    y_pred = clf.predict(x_test)
    print('classification_report\n', metrics.classification_report(y_test, y_pred, digits=4))
    print('Accuracy:', metrics.accuracy_score(y_test, y_pred))

7 综合测试结果

测试了2000条数据,使用如下方法:

  • 支持向量机 SVM

  • 随机数深林

  • 逻辑回归
    在这里插入图片描述

可以看到,2000条数据训练结果,200条测试结果,精度还算高,不过数据较少很难说明问题。

8 其他模型方法

还可以构建深度学习模型

在这里插入图片描述

网络架构第一层是预训练的嵌入层,它将每个单词映射到实数的N维向量(EMBEDDING_SIZE对应于该向量的大小,在这种情况下为100)。具有相似含义的两个单词往往具有非常接近的向量。

第二层是带有LSTM单元的递归神经网络。最后,输出层是2个神经元,每个神经元对应于具有softmax激活功能的“垃圾邮件”或“正常邮件”。



    def get_embedding_vectors(tokenizer, dim=100):
    embedding_index = {}
    with open(f"data/glove.6B.{dim}d.txt", encoding='utf8') as f:
    for line in tqdm.tqdm(f, "Reading GloVe"):
    values = line.split()
    word = values[0]
    vectors = np.asarray(values[1:], dtype='float32')
    embedding_index[word] = vectors
    
    word_index = tokenizer.word_index
    embedding_matrix = np.zeros((len(word_index)+1, dim))
    for word, i in word_index.items():
    embedding_vector = embedding_index.get(word)
    if embedding_vector is not None:
    # words not found will be 0s
    embedding_matrix[i] = embedding_vector
    
    return embedding_matrix


    def get_model(tokenizer, lstm_units):
    """
    Constructs the model,
    Embedding vectors => LSTM => 2 output Fully-Connected neurons with softmax activation
    """
    # get the GloVe embedding vectors
    embedding_matrix = get_embedding_vectors(tokenizer)
    model = Sequential()
    model.add(Embedding(len(tokenizer.word_index)+1,
    EMBEDDING_SIZE,
    weights=[embedding_matrix],
    trainable=False,
    input_length=SEQUENCE_LENGTH))
    
    model.add(LSTM(lstm_units, recurrent_dropout=0.2))
    model.add(Dropout(0.3))
    model.add(Dense(2, activation="softmax"))
    # compile as rmsprop optimizer
    # aswell as with recall metric
    model.compile(optimizer="rmsprop", loss="categorical_crossentropy",
    metrics=["accuracy", keras_metrics.precision(), keras_metrics.recall()])
    model.summary()
    return model

训练结果如下:

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, 100, 100) 901300
_________________________________________________________________
lstm_1 (LSTM) (None, 128) 117248
_________________________________________________________________
dropout_1 (Dropout) (None, 128) 0
_________________________________________________________________
dense_1 (Dense) (None, 2) 258
=================================================================
Total params: 1,018,806
Trainable params: 117,506
Non-trainable params: 901,300
_________________________________________________________________
X_train.shape: (4180, 100)
X_test.shape: (1394, 100)
y_train.shape: (4180, 2)
y_test.shape: (1394, 2)
Train on 4180 samples, validate on 1394 samples
Epoch 1/20
4180/4180 [==============================] - 9s 2ms/step - loss: 0.1712 - acc: 0.9325 - precision: 0.9524 - recall: 0.9708 - val_loss: 0.1023 - val_acc: 0.9656 - val_precision: 0.9840 - val_recall: 0.9758

Epoch 00001: val_loss improved from inf to 0.10233, saving model to results/spam_classifier_0.10
Epoch 2/20
4180/4180 [==============================] - 8s 2ms/step - loss: 0.0976 - acc: 0.9675 - precision: 0.9765 - recall: 0.9862 - val_loss: 0.0809 - val_acc: 0.9720 - val_precision: 0.9793 - val_recall: 0.9883

在这里插入图片描述

9 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1242642.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【RtpRtcp】3: webrtc m79:video 相关创建及切片、发送

m79 的 客户端代码流程。 对于视频帧: CreateRtpStreamSenders 管理一组RtpStreamSender ,每一个RtpStreamSender 都进行rtp包的发送: 具体发送是RTPSenderVideo 处理,RTPSenderVideo 对收到的h264 帧,进行帧分片rtp,然后一组包一起使用LogAndSendToNetwork 发送的。 Rtp…

解决vue中引入天地图显示不全问题,设置setTimeout即可解决!

index.html中引入天地图api <script type"text/javascript" src"https://api.tianditu.gov.cn/api?v4.0&tk你的key"></script>map.vue中初始化天地图 //初始化天地图 initTMap() {const T window.T;// 3.初始化地图对象this.tMap new…

探索WebStorm 2023 Mac/win:最强大的JavaScript开发工具

在当今的软件开发领域&#xff0c;JavaScript已经成为了一种不可或缺的编程语言。而在众多的JavaScript开发工具中&#xff0c;WebStorm一直以其强大的功能和友好的用户界面脱颖而出。现在&#xff0c;我们迎来了全新的WebStorm 2023版本&#xff0c;它将带给开发者们更加出色的…

Vue中使用Echarts实现数据可视化

文章目录 引言一、安装Echarts二、引入Echarts三、创建图表容器四、初始化Echarts实例五、配置图表选项和数据六、实现图表更新七、Vue实例代码结语我是将军&#xff0c;我一直都在&#xff0c;。&#xff01; 引言 接着上一篇内容&#xff0c;我将继续分享有关数据可视化的相…

VM CentOS7安装ffmpeg

项目中涉及给视频添加水印&#xff0c;使用到了ffmpeg&#xff0c;windows系统可直接使用&#xff0c;Linux需要手动编译完成ffmpeg后才可正常使用。 配置yum源: 备份原repo文件 cd /etc/yum.repos.d/mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.r…

从制造/金融/教育/医疗行业实战场景里,了解如何基于亚马逊云科技LLM相关工具打造知识库

背景 本篇将为大家阐述亚马逊云科技大语言模型下沉到具体行业进行场景以及实施案例的介绍&#xff0c;是亚马逊云科技官方《基于智能搜索和大模型打造企业下一代知识库》系列的第四篇博客。感兴趣的小伙伴可以进入官网深入了解其核心组件、快速部署指南以及LangChain集成及其在…

字符串匹配算法——KMP

有文本串aabaabaaf&#xff0c;模式串aabaaf问文本串中是否出现过模式串 暴力解法 最不用动脑子的&#xff0c;直接两层for循环&#xff0c;逐个匹配&#xff0c;匹配到不相等的值时把文本串后移一位&#xff0c;再重新比较。这种方法的复杂度是O(mn)&#xff0c;该方法低效的…

软件开发及交付的项目管理角色

在软件开发及交付过程中&#xff0c;通常会涉及不同的角色和职责&#xff0c;包括业务角色、技术角色和管理角色。这些角色在项目管理中发挥着不同的作用&#xff0c;以确保项目的成功和交付高质量的产品。 业务角色&#xff1a;包括产品经理、业务分析师和业务运营人员等职位…

Confluence Server Webwork 预身份验证 OGNL 注入 (CVE-2021-26084)

漏洞描述 Confluence 是由澳大利亚软件公司 Atlassian 开发的基于 Web 的企业 wiki。 存在一个 OGNL 注入漏洞&#xff0c;允许未经身份验证的攻击者在 Confluence Server 或 Data Center 实例上执行任意代码。 漏洞环境及利用 搭建docker环境 Confluence搭建见前文 Atlas…

网络层协议-IP协议

目录 基本概念IP协议格式分片与组装分片组装 网段划分特殊的IP地址IP地址的数量限制私有IP地址和公网IP地址路由 基本概念 TCP作为传输层控制协议&#xff0c;其保证的是数据传输的可靠性和传输效率&#xff0c;但TCP提供的仅仅是数据传输的策略&#xff0c;而真正负责数据在网…

Android JNI 异常定位(2)—— addr2line

Android native报错有时候只有一句 signal 11 (SIGSEGV)&#xff0c;这种情况仅通过log是很难定位到问题的。不过Android 在/data/tombstones目录保存了错误的堆栈信息&#xff0c;为定位bug提供了路径。不过一般这里的log都无法像java一样直接定位的出错的行数。如下图&#x…

Python“牵手”淘宝商品详情接口运营场景,淘宝商品详情接口调用指南

淘宝商品详情数据接口是淘宝开放平台提供的一个API接口&#xff0c;用于获取商品详细信息。通过这个接口&#xff0c;开发者可以根据商品ID或商品链接&#xff0c;获取该商品的详细信息&#xff0c;包括标题、价格、销量、描述等。 要使用淘宝商品详情接口&#xff0c;首先需要…

为什么程序员不直接用线上环境写代码呢?

为什么程序员不直接用线上环境写代码呢&#xff1f; 有的&#xff0c;我就是直接用Linux作为主力电脑使用&#xff0c;大概从201 6年起&#xff0c;我就开始这样干了。无论是编 程、画电路板、画UI、剪视频.... 都在Linux上面完成。 编程工具大部分都有Linux版本&#xff0c;…

Python接口自动化测试——如何搭建测试环境

前言 接口测试的方式有很多&#xff0c;比如可以用工具&#xff08;jmeter,postman&#xff09;之类&#xff0c;也可以自己写代码进行接口测试&#xff0c;工具的使用相对来说都比较简单&#xff0c;重点是要搞清楚项目接口的协议是什么&#xff0c;然后有针对性的进行选择&a…

YOLOv5分割训练,从数据集标注到训练一条龙解决

最近进行了分割标注&#xff0c;感觉非常好玩&#xff0c;也遇到了很多坑&#xff0c;来跟大家分享一下&#xff0c;老样子有问题评论区留言&#xff0c;我会的就会回答你。 第一步&#xff1a;准备数据集 1、安装标注软件labelme如果要在计算机视觉领域深入的同学&#xff0…

轻松记录收支明细,一键打印,财务无忧!

作为现代人&#xff0c;管理好个人财务是非常重要的。但是&#xff0c;如何记录收支明细并打印出来呢&#xff1f;今天&#xff0c;我们向您推荐一款财务软件&#xff0c;帮助您轻松解决这个问题。 首先第一步&#xff0c;我们要打开【晨曦记账本】&#xff0c;并登录账号。 第…

2020年09月 Scratch(三级)真题解析#中国电子学会#全国青少年软件编程等级考试

Scratch等级考试(1~4级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 执行下面程序,屏幕上最多会看到多少个苹果? A:10个 B:11个 C:1个 D:无法确定 答案:B 第2题 关于下面程序,说法正确的是 ? A:执行 后,马上执行

国内怎么投资黄金,炒黄金有哪些好方法?

随着我国综合实力的不断强大&#xff0c;投资市场的发展也日臻完善&#xff0c;现已成为了国际黄金市场的重要组成部分&#xff0c;人们想要精准判断金市走向&#xff0c;就离不开对我国经济等信息的仔细分析。而想要有效提升盈利概率&#xff0c;人们还需要掌握国内黄金投资的…

加速软件开发:自动化测试在持续集成中的重要作用!

持续集成的自动化测试 如今互联网软件的开发、测试和发布&#xff0c;已经形成了一套非常标准的流程&#xff0c;最重要的组成部分就是持续集成&#xff08;Continuous integration&#xff0c;简称CI&#xff0c;目前主要的持续集成系统是Jenkins&#xff09;。 那么什么是持…

Redis Stream消息队列

什么是Stream? Stream 实际上是一个具有消息发布/订阅功能的组件&#xff0c;也就常说的消息队列。其实这种类似于 broker/consumer(生产者/消费者)的数据结构很常见&#xff0c;比如 RabbitMQ 消息中间件、Celery 消息中间件&#xff0c;以及 Kafka 分布式消息系统等&#x…