全志R128芯片RTOS调试指南

news2024/11/15 23:58:51

RTOS 调试指南

此文档介绍 FreeRTOS 系统方案支持的常用软件调试方法,帮助相关开发人员快速高效地进行软件调试,提高解决软件问题的效率。

栈回溯

栈回溯是指获取程序的调用链信息,通过栈回溯信息,能帮助开发者快速理清程序执行流程,提高分析问题的效率。

用途

  1. 获取程序调用关系,理清程序执行流程。
  2. 在系统触发异常时,快速分析异常所在位置及其调用链。
  3. 在分析某任务卡死原因时,可以通过对该任务进行栈回溯,快速分析卡死点。
  4. 分析某些资源如 sem、mutex 的获取、释放信息。

配置

Kernel Options ‑‑‑>
    Backtrace Select (debug backtrace by machine code) ‑‑‑>
        (X) debug backtrace by machine code  // 通过解析机器码方式进行回溯
        ( ) debug backtrace by frame pointer // 通过解析frame pointer方式进行回溯
        ( ) no backtrace                     // 关闭栈回溯

接口介绍

int backtrace(char *taskname, void *output[], int size, int offset, print_function print_func);

参数:

  • taskname : 任务名字;可为NULL,表示回溯当前任务
  • output : 栈回溯结果保存数组,可以为NULL
  • size : output数组大小,可为0
  • offset : 栈回溯保存结果的偏移,可为0
  • print_func : 打印函数,可用printf

返回值:

  • level : 回溯层次

终端命令

在设备端的终端界面上支持使用 backtrace 命令对指定的任务进行回溯。

作用:查看指定任务堆栈回溯信息
用法:backtrace [taskname]

回溯信息解析

  1. 在 PC 端开发环境中,在 FreeRTOS SDK 根目录下,执行 source envsetup.sh
  2. 在 PC 端开发环境中,在 FreeRTOS SDK 的 lichee/rtos 目录下创建 backtrace.txt 文件,然后将回溯信息从终端中拷贝出来,并保存到 backtrace.txt 文件中。
  3. 在 PC 端开发环境中,执行 callstack backtrace.txt 命令,会获取以下回溯信息。
mhd_start_scan at /xxx/mhd_apps_scan.c:334 #mhd_start_scan表示函数名,/xxx/mhd_apps_scan.c表示函数所在的文件路径,334表示函数调用处的行号。

mhd_softap_start at /xxx/mhd_apps_softap.c:263
wifi_recv_cb at /xxx/mhd_api_test.c:624
mhd_get_host_sleep at /xxx/mhd_apps_wifi.c:81
bswap_16 at /xxx/aw‑alsa‑lib/bswap.h:39
(inlined by) convert_from_s16 at ??:?
linear_init at /xxx/pcm_rate_linear.c:378
resampler_basic_interpolate_single at /xxx/resample_speexdsp.c:395
__fill_vb2_buffer at /xxx/videobuf2‑v4l2.c:392
cci_read at /xxx/cci_helper.c:728
ecdsa_signature_to_asn1 at /xxx/ecdsa.c:294
cmd_wifi_fwlog at /xxx/mhd_api_test.c:449
# 函数调用顺序为从下到上,即cmd_wifi_fwlog ‑> ecdsa_signature_to_asn1 ‑> cci_read ... ‑> mhd_start_scan

注意事项

请确保执行解析命令时所指定的 rt_system.elf 为系统固件所对应的 rt_system.elf 文件,否则解析后的栈回溯信息无法确保正确。

addr2line 分析

发生异常时,如果栈回溯失败,可以通过 addr2line 工具,对打印出来的栈上数据进行分析,从而确定栈回溯信息。需要注意的是,使用该方法调试的开发人员,需要提前了解一些 ARM 体系架构和入栈出栈等相关知识。

用途

在栈回溯失败时,使用 addr2line 从栈上数据中分析栈回溯信息。

用法

发生异常时当前栈内容打印如下:

dump stack memory:
0x40940f18: 0x40639028 0x4099ba68 0x00000000 0x00000000
0x40940f28: 0x00000000 0x00000000 0x00000000 0x00000000
0x40940f38: 0x00000000 0x00000000 0x00000000 0x00000000
0x40940f48: 0x00000000 0x00000000 0x00000000 0x00000000
0x40940f58: 0x00000000 0x00000000 0x00000000 0x00000000
0x40940f68: 0x00000000 0x00000000 0x00000000 0x00000000
0x40940f78: 0x00000000 0x00000000 0x00000000 0x00000000
0x40940f88: 0x00000000 0x00000000 0x00000000 0x00000000
0x40940f98: 0x00000000 0x404f3680 0x00000001 0x4099ba68
0x40940fa8: 0x4099ba68 0x00000001 0x4099b628 0x00000542
0x40940fb8: 0x4099bb68 0x40141388 0x4099ba68 0x404f3680
0x40940fc8: 0x4099a628 0x4099ba68 0x4099bb6a 0x40142214
0x40940fd8: 0x40141e2c 0x00000000 0x40141e2c 0xdeadbeef
0x40940fe8: 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef
0x40940ff8: 0xdeadbeef 0x400d88b4 0x00000000 0x0001b63d

对所有的内存数据使用下列命令进行分析。

$(SDK_ROOT)/lichee/rtos/tools/gcc‑arm‑melis‑eabi‑8‑2019‑q3‑update/bin/arm‑melis‑eabi‑addr2line ‑a address ‑e rt_system.elf ‑f

# SDK_ROOT 表示SDK根目录
# ‑f:显示函数名
# ‑a:address为打印出来的地址
# ‑e:程序文件

分析

对于无法解析的内存数据予以丢弃后,可得到以下有效的分析信息。

0x40141388
msh_exec
/xxx/finsh_cli/msh.c:415

0x40142214
finsh_thread_entry
/xxx/finsh_cli/shell_entry.c:746
# 函数调用关系 finsh_thread_entry ‑> msh_exec

内存泄露分析

FreeRTOS 系统提供轻量级的内存泄露分析功能,启动内存泄露分析后,每当申请内存时,将该内存块挂入链表中,释放时将其从链表中摘除。最终还存在于链表之中的,便是可疑的内存泄露点。

用途

可用于分析、定位 FreeRTOS 系统的内存泄露问题。

配置

System components ‑‑‑>
    aw components ‑‑‑>
        Memleak Components Support ‑‑‑>
            [*] Tina RTOS Memleak #使能内存泄露分析工具
            (16) Tina RTOS Memleak Backtrace Level @ 内存泄露分析栈回溯层数

终端命令

memleak
作用:内存泄露分析
用法:
	memleak 1 使能内存泄露分析,记录所有内存块申请信息
    memleak 0 关闭内存泄露分析,删除所有内存块的申请信息
    memleak 1 thread_name1 thread_name2 使能内存泄露分析,记录指定任务的内存块申请信息
    memleak show 不关闭内存泄露分析,打印出所有内存块申请信息
memallocate
作用:查看指定任务的内存泄露分析信息
用法:memallocate thread_name

内存泄露 log 分析

关闭内存泄露检测时,会打印可疑的内存泄露点及其回溯信息,开发者可根据回溯信息,参考栈回溯章节进行分析。

001: ptr = 0x404c7800, size = 0x00000400.
    backtrace : 0x401da778
    backtrace : 0x4013cd78
    backtrace : 0x4013b190
    backtrace : 0x401b7c44
    backtrace : 0x401e1854
    
# ptr : 存留在链表中的内存块地址
# size : 存留在链表中的内存块大小
# backtrace : 申请该内存块时的栈回溯信息

内存重复释放检查

FreeRTOS 系统提供轻量级的内存重复释放分析功能,在内存堆管理器初始化完成之后,使能内存重复释放检测功能,每当申请内存时,将该内存块挂入链表中,释放时将其从链表中摘除。如果释放一个不存在于该链表中的内存块时,说明之前已经释放过该块内存,则本次释放即为内存重复释放。

用途

分析是否存在内存重复释放,以及找到第 2 次释放同一个内存块的调用链信息

配置

System components ‑‑‑>
    aw components ‑‑‑>
        Memleak Components Support ‑‑‑>
            [*] Tina RTOS Memleak #使能内存泄露分析工具
            [*] Tina RTOS Double Free Check #使能内存重复释放检查

内存重复释放 log 分析

double free checked!!!
backtrace : 0x401da778
backtrace : 0x4013cd78
backtrace : 0x4013b190
backtrace : 0x401b7c44
backtrace : 0x401e1854

出现 double free checked!!! 即表示存在内存重复释放现象,打印出来的栈回溯信息是第二次释放该内存块时的调用链信息。

系统崩溃异常分析

系统崩溃异常主要是指 CPU 因非法地址访问、指令译码错误等原因,进入了异常模式,表现形式为系统打印异常栈信息和寄存器信息。

Arm M33 Star CPU 软件异常分析

M33 CPU 异常类型

M33 是采用 ARMv8m 指令集架构的处理器,其软件异常处理类型符合 ARMv8m 软件异常类型。其异常类型如下:

  1. Bus Fault。触发该异常的原因有:取指失败(prefetch abort)、数据读/写失败(data abort)。BFSR 寄存器会保存产生 bus fault 的原因。
  2. MemManage Fault。触发该异常的原因有:访问 MPU 设置区域覆盖范围之外的地址、往只读region 写数据、用户级下访问了只允许在特权级下访问的地址、在不可执行的存储器区域试图取指。MFSR 寄存器保存产生该异常的原因,MMSR 寄存器保存了导致异常的地址。
  3. User Fault。触发该异常的原因有:执行了未定义的指令、尝试进入 ARM 状态、使用 LDRM/STRM 多重加载/存储指令时,地址没有对齐、除数为零、任何未对齐的访问。UFSR 寄存器保存了产生该异常的原因。其中需要注意一点,device memory 在任何情况下都不允许非对齐访问。
  4. Hard Fault。触发该异常的原因有:Bus fault、MemManage Fault 以及用法 fault 上访的结果、在异常处理中读取异常向量表时产生的总线 fault 也按硬 fault 处理。HFSR 寄存器保存了产生该异常的原因。
M33 CPU 软件异常分析方法
  1. 确认异常类型。
  2. 栈回溯分析。栈回溯是指在系统崩溃之后,会打印发生异常时的栈回溯信息,供开发者进行分析,可参考栈回溯章节进行分析
崩溃 log 分析
# appos pstack:0x8146480 msp:0x81fffd0 psp:0x81464a0
# appos pstack 表示异常发生后经 CPU 硬件入栈后 SP 寄存器的值,也表明了异常发生时正在使用哪个栈
# msp 表示异常发生后 msp 寄存器的值
# psp 表示异常发生后 psp 寄存器的值,异常发生时 SP = psp/msp ‑ 0x40 (64个字节用来保存异常后的寄存器现场)
# msplim/psplim : 异常现场的 msplim 和 psplim 寄存器的值
# usage fault happen : 表示此时触发 usage(user) fault
# cause:undefine instruction 表示是触发了 user fault 中的非法指令异常
# CPU registers: 表示异常现场通用寄存器的值
# backtrace information : 表示异常现场的栈回溯信息
# 剩下信息表示对应地址的值

exception:6 happen!!
appos pstack:0x8146480 msp:0x81fffd0 psp:0x81464a0
msplim:0x0 psplim:0x8142550
usage fault happen, UFSR:0x1, cause:undefine instruction
CPU registers:
R00:[081464A0]: 0x00000001
R01:[081464A4]: 0x083adf48
R02:[081464A8]: 0x00000001
R03:[081464AC]: 0x080cf115
R04:[08146480]: 0x083adec0
R05:[08146484]: 0x083ae000
R06:[08146488]: 0x0811b574
R07:[0814648C]: 0x00000000
R08:[08146490]: 0x08080808
R09:[08146494]: 0x09090909
R10:[08146498]: 0x10101010
R11:[0814649C]: 0x11111111
R12:[081464B0]: 0x00000000
R13(SP):[081464C0]: 0x081464c0
R14(LR):[081464B4]: 0x080c8d95
R15(PC):[081464B8]: 0x080cf114
xPSR:[081464BC]: 0x61000000
SHCSR:0x00070008 step:0
‑‑‑‑backtrace information‑‑‑‑
backtrace : 0X080CF115
backtrace fail!
backtrace : 0X080C8D92
backtrace : 0X080C6C66
backtrace : 0X080C7CE0
backtrace : 0X080DAD25
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
stack info:
[081464C0]: 0x003adec0 0x0844ae00 0x08130eb0 0x080c6c69
[081464D0]: 0x0813e470 0x080d8bcf 0x10000000 0x00000000
[081464E0]: 0x00000000 0x00000006 0x0813e220 0x0813e470
[081464F0]: 0x05050505 0x0813e140 0x05050505 0x0813e180
[08146500]: 0x07070707 0x08080808 0x09090909 0x10101010
[08146510]: 0x11111111 0x080c7ce3 0x080c6afb 0x08130eb0
[08146520]: 0x10101010 0x11111111 0x0813e180 0x01010101
.......
[LR]:0x80c8d95
[080C8B90]: 0xf73bbaa5 0xf73bbaa1 0xf73bba9d 0xe92dba99
[080C8BA0]: 0x28024ff0 0x4605b085 0xdc06468a 0x30e0f64a
[080C8BB0]: 0x000ff6c0 0xf837f008 0x2810e008 0xf64add0c
.......

RISC‑V CPU 软件异常分析

在这里插入图片描述

在 RISCV 架构中,该类问题的分析方法如下:

  1. 确认异常类型。
  2. 栈回溯分析。栈回溯是指在系统崩溃之后,会打印发生异常时的栈回溯信息,供开发者进行分析,可参考栈回溯章节进行分析
  3. 查看 sepc 寄存器。当系统发生异常时,会将异常指令的地址保存到 sepc 寄存器中。如果 sepc明显是一个非法的指令地址,可查看 ra 寄存器来确定异常地址
  4. 反编译查看异常指令,确定异常的直接原因并进行分析。常用反编译方法 riscv64‑unknown‑elf‑objdump ‑d xxx.elf。xxx.elf 需要根据 sepc 寄存器的值,确认其所属模块,然后选定对应的elf 文件。

部分采用 RISC‑V 指令集的芯片不一定会运行 S 模式,只会运行 M 模式,所以此处所指的 sepc 和 mepc 可根据实际情况进行替换,其他 RISC‑V 寄存器同理

# EXC_STORE_PAGE_FAULT: 回写数据访问页面异常,可参考[RISCV异常分析]来分析
# gprs : 通用寄存器的值
# sepc : 异常发生时pc寄存器的值
# sstatus : 异常发生时sstaus寄存器的值
# sscratch : 异常发生时sscratch寄存器的值
# backtrace : 异常发生时栈回溯信息
# dump stack memory : 异常发生时栈的数据内容
# dump sepc memory : 异常发生时sepc地址指向的数据内容

=====================================================================================================
EXC_BREAKPOINT
=====================================================================================================
gprs:
x0:0x0000000000000000 ra:0x0000000008252828 sp:0x000000000844aef0 gp:0x00000000083695b0
tp:0x0000000000000000 t0:0x0000000000000009 t1:0x0000000000000002 t2:0x0000000000000000
s0:0x000000000844af00 s1:0x0000000000000000 a0:0x0000000000000001 a1:0x000000000844af00
a2:0x0000000000000000 a3:0x0000000000000000 a4:0x0000000000000000 a5:0x0000000008252162
a6:0x0000000000000000 a7:0x0000000000000008 s2:0x0000000000000001 s3:0x000000000844b180
s5:0x0000000000000800 s5:0x0000000008329c88 s6:0x00000000082fca88 s7:0xa5a5a5a5a5a5a5a5
s8:0xa5a5a5a5a5a5a5a5 s9:0xa5a5a5a5a5a5a5a5 s10:0xa5a5a5a5a5a5a5a5 s11:0xa5a5a5a5a5a5a5a5
t3:0x0000000000000022 t4:0x000000000844af08 t5:0x000000000000003b t6:0x0000000000000020
other:
mepc :0x0000000008252162
mcause :0x0000000000000003
mtval :0x0000000000000000
mstatus :0x0000000a00003980
mscratch:0x0000000000000000
‑‑‑‑‑‑‑backtrace‑‑‑‑‑‑‑‑‑‑‑
backtrace : 0X08252162
backtrace : invalid lr(0000000000000000)
backtrace : 0X08252826
backtrace : 0X08251D52
backtrace : 0X082520B4
backtrace : 0X082F6694
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
==> Round [1] <==
Total Heap Size : 4587992 Bytes ( 4480 KB)
Free : 3893696 Bytes ( 3802 KB)
Min Free : 3851104 Bytes ( 3760 KB)
dump_memory:stack
0x000000000844AE70: 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5
0x000000000844AE80: 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5
0x000000000844AE90: 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5
0x000000000844AEA0: 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5
0x000000000844AEB0: 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5
0x000000000844AEC0: 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5
0x000000000844AED0: 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5 0xa5a5a5a5
0x000000000844AEE0: 0x00000800 0x00000000 0x0825281c 0x00000000
0x000000000844AEF0: 0x00000000 0x00000001 0x0844b005 0x00000000
0x000000000844AF00: 0x0844b000 0x00000000 0x00000000 0x00000000
.......
dump_memory:mepc
0x00000000082520E6: 0xbfb90084 0xfe07871b 0x0ff77713 0x05e00693
0x00000000082520F6: 0xf4e6e8e3 0x0ff00713 0xf4e404e3 0x0084d78b
0x0000000008252106: 0x74132405 0xbf2d0ff4 0xf4067179 0xe42af022
.......
dump_memory:x1
0x0000000008252818: 0xe61ff0ef 0x691cc519 0x85a2c789 0x9782854a
0x0000000008252828: 0x30834485 0x34032281 0x85262201 0x21013903
0x0000000008252838: 0x21813483 0x23010113 0x71198082 0xeccef4a6
0x0000000008252848: 0x0010c497 0x45448493 0x0010c997 0x44898993
0x0000000008252858: 0xf0caf8a2 0x0009a403 0x0004a903 0xe0dae8d2
0x0000000008252868: 0xf862fc5e 0xf06af466 0xe4d6fc86 0x8b2aec6e
0x0000000008252878: 0xe4028bae 0x0014d797 0x4607a223 0x000d8c17
0x0000000008252888: 0x124c0c13 0x06800a13 0x03a00c93 0x03f00d13
.......
dump_memory:x3
0x00000000083695A0: 0x082c9752 0x00000000 0x00000000 0x00000000
0x00000000083695B0: 0x00000000 0x00000000 0x08348148 0x00000000
0x00000000083695C0: 0x00000000 0x00000000 0x082c8b80 0x00000000
0x00000000083695D0: 0x082cab12 0x00000000 0x00000000 0x00000000
0x00000000083695E0: 0x08349070 0x00000000 0x00000000 0x00000000
0x00000000083695F0: 0x082d19ce 0x00000000 0x082d174c 0x00000000
0x0000000008369600: 0x00000000 0x00000000 0x0834caa8 0x00000000
0x0000000008369610: 0x00000000 0x00000000 0x00000000 0x00000000
.......

断点调试

断点调试是指利用 CPU 的硬件断点或者软件断点来进行调试,通过对指定的地址设置断点,当程序执行到该地址时,触发软件取指异常,再根据异常信息进行分析。通过使用该方法,可以迅速判断程序是否执行到指定的地址。目前该功能仅在使用 M33 Star CPU 的芯片上支持。

用途

可用于分析软件执行流程,以及快速分析函数调用参数、返回值等。

配置

System components ‑‑‑>
    aw components ‑‑‑>
        Watchpoint Components Support ‑‑‑>
            [*] Tina RTOS Watchpoint # 使用断点与观察点

终端命令

作用 : 设置程序断点,当前仅使用硬件断点
用法 : breakpoint [set | remove] addr
    set : 设置断点
    remove : 取消断点
    addr : 在该地址设置断点

接口介绍

设置断点
int gdb_set_hw_break(unsigned long addr);

参数

  • addr : 待设置断点的地址

返回值

  • 0 : 设置断点成功
  • ‑1 : 设置断点失败
移除断点
int gdb_remove_hw_break(unsigned long addr);

参数

  • addr : 待移除断点的地址

返回值

  • 0 : 移除断点成功
  • -1 : 移除断点失败

断点异常分析

断点异常分析,可参考系统崩溃异常分析章节进行分析。

观察点调试

观察点调试是指利用 CPU 的硬件观察点来进行调试,通过对指定的地址设置指定属性的观察点,当 CPU 对该地址进行指定属性的操作时,会触发数据访问异常,然后再根据异常信息进行分析。通过使用该方法,可以迅速判断某块内存是否被修改、读取或者访问。目前该功能仅在使用 M33 Star CPU 的芯片上支持。

观察点属性表

属性作用
write监视写操作
read监视读操作
access监视访问操作,包括读和写

用途

可用于分析某块内存处是否被篡改等问题。

配置

System components ‑‑‑>
    aw components ‑‑‑>
        Watchpoint Components Support ‑‑‑>
            [*] Tina RTOS Watchpoint # 使用断点与观察点

终端命令

作用 : 设置硬件观察点,当前仅使用硬件断点
用法 : watchpoint [write | read | access | remove] addr
    write : 监视写操作
    read : 监视读操作
    access : 监视访问操作
    remove : 取消观察点
    addr : 在该地址设置/取消观察点

接口介绍

设置观察点
int gdb_set_hw_watch(unsigned long addr, enum gdb_bptype type);

参数

  • addr : 待设置断点的地址

  • type : 观察点类型

返回值

  • 0 : 设置观察点成功

  • ‑1 : 设置观察点失败

移除观察点
int gdb_remove_hw_watch(unsigned long addr);

参数

  • addr : 待移除观察点的地址

返回值

  • 0 : 移除观察点成功

  • ‑1 : 移除观察点失败

观察点异常分析

观察点异常分析,可参考系统崩溃异常分析章节进行分析。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1237174.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

线性代数 - 几何原理

目录 序言向量的定义线性组合、张成空间与向量基线性变换和矩阵线性复合变换与矩阵乘法三维空间的线性变换行列式矩阵的秩和逆矩阵维度变换点乘叉乘基变换特征值和特征向量抽象向量空间 序言 欢迎阅读这篇关于线性代数的文章。在这里&#xff0c;我们将从一个全新的角度去探索线…

NX二次开发UF_CAM_PREF_ask_logical_value 函数介绍

文章作者&#xff1a;里海 来源网站&#xff1a;https://blog.csdn.net/WangPaiFeiXingYuan UF_CAM_PREF_ask_logical_value Defined in: uf_cam_prefs.h int UF_CAM_PREF_ask_logical_value(UF_CAM_PREF_t pref, logical * value ) overview 概述 This function provides …

DC电源模块检测故障步骤有哪些

BOSHIDA DC电源模块检测故障步骤有哪些 DC电源模块检测故障步骤如下&#xff1a; 1. 检查输入电压&#xff1a;用万用表测量输入电压&#xff0c;确保其在规定范围内。 2. 检查输出电压&#xff1a;用万用表或示波器测量输出电压&#xff0c;确保其在规定范围内。 3. 检查输…

HPC 集群计算类型的注意事项

HPC 集群计算类型的注意事项 HPC 工作负载在 CPU &#xff0c;内存&#xff0c;网络和存储资源需求方面有不同的要求。 您可以从以下内容开始: 核心计数每个核心的内存网络带宽和等待时间处理器时钟速度 目标是选取返回最佳性价比的计算配置。 HPC 工作负载可以与单个核心作…

markdown常用命令说明,自己常用的,用到其他的再添加

对于要标红的字体 <font color"red">标签中的字会显示为红色</font> 之后的字不会再显示为红色注意: <font color"red">或者<font colorred>或者<font colorred>三种写法都可以

汽车智能座舱/智能驾驶SOC -1

看到华为&小康的 AITO问界M6、M7各种广告营销、宣传、测评、好评如潮水般席卷网络各APP平台。翻看了中信和海通对特斯拉M3和比亚迪元的拆解报告&#xff0c;也好奇华为的汽车芯片平台又能做出哪些新花样&#xff0c;下面是Mark开头&#xff0c;也学习下智能座舱和智能驾驶芯…

Vatee万腾的数字化掌舵:Vatee科技解决方案的全面引领

随着数字化时代的到来&#xff0c;Vatee万腾凭借其卓越的科技实力和全面的解决方案&#xff0c;成功地在数字化探索的航程中掌舵引领。 首先&#xff0c;Vatee万腾以其强大的数字化科技实力成为行业的引领者。vatee万腾不仅在人工智能、大数据分析、云计算等前沿领域取得了显著…

数据集笔记:Pems 自行下载数据+python处理

以下载District 4的各station每5分钟的车速为例 1 PEMS网站下载数据 点击红色的 选择需要的station和区域&#xff0c;点击search&#xff0c;就是对应的数据&#xff0c;点击数据即可下载 &#xff08;这个是station每5分钟的速度数据&#xff09; 2 pems 速度数据 2.1 每一…

DDD之六边形架构(Hexagonal Architecture)

领域驱动设计系列文章&#xff0c;点击上方合集↑ 六边形架构&#xff08;Hexagonal Architecture&#xff09;&#xff0c;也被称为端口和适配器架构&#xff08;Ports and Adapters Architecture&#xff09;&#xff0c;是一种软件架构模式&#xff0c;用于构建可测试、可维…

Ajax基础(应用场景|jquery实现Ajax|注意事项|Ajax发送json数据|Ajax携带文件数据)

文章目录 一、Ajax简介二、基于jquery实现Ajax三、使用Ajax注意的问题1.Ajax不要与form表单同时提交2.后端响应格式问题3、使用了Ajax作为请求后的注意事项 四、前后端数据传输的编码格式(content-Type)1.urlencoded2.formdata3.application/json 五、Ajax携带文件数据六、Ajax…

稳定性保障8个锦囊,建议收藏!

稳定性保障&#xff0c;是一切技术工作的出发点和落脚点&#xff0c;也是 IT 工作最核心的价值体现&#xff0c;当然也是技术人员最容易“翻车”的阴沟。8个稳定性保障锦囊&#xff0c;分享给各位技术人员择机使用。 #1 设定可量化的、业务可理解的可用性目标 没有度量就没有改…

快来瞧瞧这样制作出来的电子画册,还便于分享宣传呢!

说起电子画册制作&#xff0c;很多人都不知道从何入手。与传统纸质画册相比&#xff0c;电子画册最大的优点是便于传阅&#xff0c;通过微信、QQ等社交平台都能进行转发和分享。而且内容的排版基本上和纸质画册一致&#xff0c;不同的是&#xff0c;无论图片还是文字都可以赋予…

【数据结构算法(二)】链表总结

&#x1f308;键盘敲烂&#xff0c;年薪30万&#x1f308; 目录 普通单向链表 双向链表 带哨兵的链表 环形链表 ⭐双向带头带环链表的实现⭐ ⭐链表基础OJ⭐ 普通单向链表 结点结构&#xff1a;只有val 和 next指针 初始时&#xff1a;head null; 双向链表 指针&…

特征工程完整指南 - 第一部分

苏米特班迪帕迪亚 一、说明 特征工程是利用领域知识从原始数据中提取特征的过程。这些功能可用于提高机器学习算法的性能。本篇叙述在特征选择过程的若干数据处理。 一般来说&#xff0c;特征工程有以下子步骤&#xff1a; 特征转换特征构建特征选择特征提取 二、特征转换的缺…

12.文档中添加Appendix

要在 LaTeX 文档中添加附录&#xff0c;您可以使用 \appendix 命令&#xff0c;它会告诉 LaTeX 后续部分是附录。以下是添加附录的步骤&#xff1a; 在文档的导言部分&#xff08;在 \begin{document} 之前&#xff09;导入 appendix 宏包。您可以使用以下命令&#xff1a; \…

Centos8部署MySQL主从复制报错问题

问题1.在部署MySQL主从复制时&#xff0c;创建用户提示ERROR 1819&#xff1a;Your password does not satisfy the current policy requirements。即为当前配置的密码&#xff0c;不符合策略要求。 问题1解决方式&#xff1a; set global validate_password.policyLOW; \\…

「Verilog学习笔记」含有无关项的序列检测

专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点&#xff0c;刷题网站用的是牛客网 timescale 1ns/1ns module sequence_detect(input clk,input rst_n,input a,output reg match);reg [8:0] a_tem ; always (posedge clk or negedge rst_n) begin if (~rs…

jvs-智能bi(自助式数据分析)11.21更新功能上线

jvs智能bi更新功能 新增: 1.字段设置节点新增自定义时间格式功能&#xff1b; 自定义功能允许用户根据需要自定义日期和时间字段的显示格式&#xff0c;为用户提供了更大的灵活性和便利性 2.图表时间搜索条件新增向下兼容模式&#xff1b; 时间搜索条件的向下兼容模式允许用…

万界星空科技QMS质量管理系统介绍

QMS&#xff08;Quality Management System&#xff09;质量管理系统是五大基础系统之一&#xff0c;在工业企业中被广泛的应用&#xff0c;在质量策划、生产过程质量监督、体系审核和文档管理等业务上发挥着不可替代的作用。 一般制造业工厂现状&#xff1a;质量成本高&#x…

运动耳机哪个牌子好?盘点最值得入手的五款运动耳机

现在&#xff0c;不入耳的运动耳机成了许多运动爱好者的首选&#xff0c;我也不例外&#xff0c;不得不说骨传导耳机跟运动真的很搭&#xff0c;不仅佩戴稳固不掉落&#xff0c;而且防水好&#xff0c;可以说是最值得入手的运动耳机&#xff0c;为了避免大家在选购运动耳机的时…