C# Onnx 百度PaddleSeg发布的实时人像抠图PP-MattingV2

news2025/1/3 1:51:25

目录

效果

模型信息

项目

代码

下载


效果

图片源自网络侵删 

模型信息

Inputs
-------------------------
name:img
tensor:Float[1, 3, 480, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:sigmoid_5.tmp_0
tensor:Float[1, 1, 480, 640]
---------------------------------------------------------------

项目

VS2022

.net framework 4.8

OpenCvSharp 4.8

Microsoft.ML.OnnxRuntime 1.16.2

代码

using Microsoft.ML.OnnxRuntime.Tensors;
using Microsoft.ML.OnnxRuntime;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Linq;
using System.Drawing;

namespace Onnx_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        float conf_threshold = 0.65f;

        int inpWidth;
        int inpHeight;

        int outHeight, outWidth;

        Mat image;

        string model_path = "";

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        Tensor<float> mask_tensor;
        List<NamedOnnxValue> input_ontainer;

        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new System.Drawing.Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();

            // 创建输出会话
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            model_path = "model/ppmattingv2_stdc1_human_480x640.onnx";

            inpHeight = 480;
            inpWidth = 640;

            outHeight = 480;
            outWidth = 640;

            onnx_session = new InferenceSession(model_path, options);

            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();

            image_path = "test_img/1.jpg";
            pictureBox1.Image = new Bitmap(image_path);

        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            System.Windows.Forms.Application.DoEvents();

            image = new Mat(image_path);

            Mat resize_image = new Mat();
            Cv2.Resize(image, resize_image, new OpenCvSharp.Size(inpWidth, inpHeight));

            float[] input_tensor_data = new float[1 * 3 * inpWidth * inpHeight];

            for (int c = 0; c < 3; c++)
            {
                for (int i = 0; i < inpHeight; i++)
                {
                    for (int j = 0; j < inpWidth; j++)
                    {
                        float pix = ((byte*)(resize_image.Ptr(i).ToPointer()))[j * 3 + 2 - c];
                        input_tensor_data[c * inpHeight * inpWidth + i * inpWidth + j] = (float)(pix / 255.0);
                    }
                }
            }

            input_tensor = new DenseTensor<float>(input_tensor_data, new[] { 1, 3, inpHeight, inpWidth });

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_ontainer.Add(NamedOnnxValue.CreateFromTensor("img", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_ontainer);
            dt2 = DateTime.Now;

            //将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            float[] mask = results_onnxvalue[0].AsTensor<float>().ToArray();

            Mat mask_out = new Mat(outHeight, outWidth, MatType.CV_32FC1, mask);

            mask_out *= 255;
            mask_out.ConvertTo(mask_out, MatType.CV_8UC1);

            Cv2.Resize(mask_out, mask_out, new OpenCvSharp.Size(image.Cols, image.Rows));

            Mat result_image = mask_out.Clone();

            if (pictureBox2.Image != null)
            {
                pictureBox2.Image.Dispose();
            }

            pictureBox2.Image = new System.Drawing.Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

            mask_out.Dispose();
            image.Dispose();
            resize_image.Dispose();
            result_image.Dispose();
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

using Microsoft.ML.OnnxRuntime.Tensors;
using Microsoft.ML.OnnxRuntime;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Linq;
using System.Drawing;

namespace Onnx_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        float conf_threshold = 0.65f;

        int inpWidth;
        int inpHeight;

        int outHeight, outWidth;

        Mat image;

        string model_path = "";

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        Tensor<float> mask_tensor;
        List<NamedOnnxValue> input_ontainer;

        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new System.Drawing.Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();

            // 创建输出会话
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            model_path = "model/ppmattingv2_stdc1_human_480x640.onnx";

            inpHeight = 480;
            inpWidth = 640;

            outHeight = 480;
            outWidth = 640;

            onnx_session = new InferenceSession(model_path, options);

            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();

            image_path = "test_img/1.jpg";
            pictureBox1.Image = new Bitmap(image_path);

        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            System.Windows.Forms.Application.DoEvents();

            image = new Mat(image_path);

            Mat resize_image = new Mat();
            Cv2.Resize(image, resize_image, new OpenCvSharp.Size(inpWidth, inpHeight));

            float[] input_tensor_data = new float[1 * 3 * inpWidth * inpHeight];

            for (int c = 0; c < 3; c++)
            {
                for (int i = 0; i < inpHeight; i++)
                {
                    for (int j = 0; j < inpWidth; j++)
                    {
                        float pix = ((byte*)(resize_image.Ptr(i).ToPointer()))[j * 3 + 2 - c];
                        input_tensor_data[c * inpHeight * inpWidth + i * inpWidth + j] = (float)(pix / 255.0);
                    }
                }
            }

            input_tensor = new DenseTensor<float>(input_tensor_data, new[] { 1, 3, inpHeight, inpWidth });

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_ontainer.Add(NamedOnnxValue.CreateFromTensor("img", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_ontainer);
            dt2 = DateTime.Now;

            //将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            float[] mask = results_onnxvalue[0].AsTensor<float>().ToArray();

            Mat mask_out = new Mat(outHeight, outWidth, MatType.CV_32FC1, mask);

            mask_out *= 255;
            mask_out.ConvertTo(mask_out, MatType.CV_8UC1);

            Cv2.Resize(mask_out, mask_out, new OpenCvSharp.Size(image.Cols, image.Rows));

            Mat result_image = mask_out.Clone();

            if (pictureBox2.Image != null)
            {
                pictureBox2.Image.Dispose();
            }

            pictureBox2.Image = new System.Drawing.Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

            mask_out.Dispose();
            image.Dispose();
            resize_image.Dispose();
            result_image.Dispose();
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

下载

源码下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1236808.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

梳理一名Go后端程序员日常用的软件~

大家好&#xff0c;我是豆小匠。 这期分享下我日常工作用到的软件和工具&#xff01; 省流版图片↓↓↓ 工具分为四类&#xff1a;编码软件、笔记/文档软件、开发工具和日常软件等。 1. 编码软件 1.1. Goland 出自JetBrain家族&#xff0c;IDE的王者&#xff0c;作为我的…

基于Towers of Binary Fields的succinct arguments

1. 引言 Ulvetanna团队Benjamin E. Diamond和Jim Posen 2023年论文《Succinct Arguments over Towers of Binary Fields》&#xff0c;开源代码见&#xff1a; https://github.com/recmo/binius&#xff08;Rust Sage&#xff09;【基于plonky3等库】 在该论文中&#xff1…

Unity中Shader反射环境

文章目录 前言一、制作反射环境的两种办法法1&#xff1a;属性面板接收一个 Cubemap 作为反射环境法2&#xff1a;把环境烘焙成一张Cubemap 二、在Unity中实现把环境烘焙成一张Cubemap1、先创建一个反射探针&#xff08;可以直接创建&#xff0c;也可以空物体增加组件&#xff…

【giszz笔记】产品设计标准流程【7】

&#xff08;续上回&#xff09; 今天来讨论下产品设计标准流程中&#xff0c;交互设计和视觉设计的内容。 想参考之前文章的&#xff0c;我把链接给到这里。 【giszz笔记】产品设计标准流程【6】-CSDN博客 【giszz笔记】产品设计标准流程【5】-CSDN博客 【giszz笔记】产品…

搭个网页应用,让ChatGPT帮我写SQL

大家好&#xff0c;我是凌览。 开门见山&#xff0c;我搭了一个网页应用名字叫sql-translate。访问链接挂在我的个人博客(https://linglan01.cn/about)导航栏&#xff0c;也可以访问https://www.linglan01.cn/c/sql-translate/直达sql-translate。 它的主要功能有&#xff1a;…

将kali系统放在U盘中插入电脑直接进入kali系统

首先准备一个空白的 U 盘。 Kali Linux | Penetration Testing and Ethical Hacking Linux Distribution 在 Windows 上制作 Kali 可启动 USB 驱动器 Making a Kali Bootable USB Drive on Windows | Kali Linux Documentation 1. 首先下载 .iso 镜像 Index of /kali-images…

释放C盘空间:WinSXS文件夹真实性大小判断及释放占用空间

文章目录 WinSxS文件分析判断WinSxS文件真实大小清理WinSxS文件夹推荐阅读 WinSxS文件分析 组件存储&#xff08;WinSxS 文件夹&#xff09;包含组成 Windows 并允许你操作系统的组件。 这些组件保存在此文件夹中&#xff0c;以防需要回滚更改或修复损坏的文件。 此文件夹中的…

第三方模块远程注入到软件中引发软件异常的若干实战案例分享

目录 1、概述 2、老版本的输入法导致软件CPU频繁跳高&#xff08;导致软件出现卡顿&#xff09;的问题 3、QQ拼音输入法注入到安装包进程中&#xff0c;导致安装包主线程卡死问题 3.1、多线程死锁分析 3.2、进一步研究 4、安全软件注入到软件中&#xff0c;注入模块发生了…

VM——绘制亮度均匀性曲线

1、需求:检测汽车内饰氛围灯的亮度均匀性,并绘制均匀性曲线 2、结果: 3、方法: 主要分为3步 (1)提取氛围灯ROI,忽略背景 (2)对提取到的ROI图进行切片处理,计算出每个切片的亮度均值 (3)绘制均匀性曲线 3.1 提取氛围灯ROI step1: 转成黑白图 step2:通过blob和…

C++医学影像PACS系统源码,影像归档和通信系统全套源码

C医学影像PACS系统源码 PACS系统&#xff0c;意为影像归档和通信系统。它是应用在医院影像科室的系统&#xff0c;主要的任务就是把日常产生的各种医学影像&#xff08;包括核磁&#xff0c;CT&#xff0c;超声&#xff0c;各种X光机&#xff0c;各种红外仪、显微仪等设备产生的…

启动Dubbo项目注册Zookeeper时提示zookeeper not connected异常原理解析

原创/朱季谦 遇到一个很诡异的问题&#xff0c;我在启动多个配置相同zookeeper的Dubbo项目时&#xff0c;其他项目都是正常启动&#xff0c;唯独有一个项目在启动过程中&#xff0c;Dubbo注册zookeeper协议时&#xff0c;竟然出现了这样的异常提示—— Caused by: java.lang.…

Rust可空类型Option

文章目录 Option基础模式匹配unwrap Rust基础教程&#xff1a;初步⚙所有权⚙结构体和枚举类⚙函数进阶⚙泛型和特征⚙并发和线程通信⚙cargo包管理 Rust进阶教程&#xff1a;用宏实现参数可变的函数⚙类函数宏 Option基础 在一些编程语言中&#xff0c;允许存在空值&#xf…

用 HLS 实现 UART

用 HLS 实现 UART 介绍 UART 是一种旧的串行通信机制&#xff0c;但仍在很多平台中使用。它在 HDL 语言中的实现并不棘手&#xff0c;可以被视为本科生的作业。在这里&#xff0c;我将通过这个例子来展示在 HLS 中实现它是多么容易和有趣。 因此&#xff0c;从概念上讲&#xf…

来吧,SpringBoot的自动配置原理都在这里了

&#x1f497;推荐阅读文章&#x1f497; &#x1f338;JavaSE系列&#x1f338;&#x1f449;1️⃣《JavaSE系列教程》&#x1f33a;MySQL系列&#x1f33a;&#x1f449;2️⃣《MySQL系列教程》&#x1f340;JavaWeb系列&#x1f340;&#x1f449;3️⃣《JavaWeb系列教程》…

【C++】类和对象一

今天来到了类和对象部分&#xff0c;我们知道C语言是面向过程编程&#xff0c;而C是面向对象编程&#xff0c;那么怎么个具体实现方法呢&#xff1f;简单来说&#xff0c;就是C语言对结构体的定义和对结构体的操作是分开的&#xff0c;这样就显得过程很独立&#xff1b;而C是把…

单链表OJ--8.相交链表

8.相交链表 160. 相交链表 - 力扣&#xff08;LeetCode&#xff09; /* 解题思路&#xff1a; 此题可以先计算出两个链表的长度&#xff0c;让长的链表先走相差的长度&#xff0c;然后两个链表同时走&#xff0c;直到遇到相同的节点&#xff0c;即为第一个公共节点 */struct Li…

紧跟热点:教你如何快速掌握ChatGPT

2023年随着OpenAI开发者大会的召开&#xff0c;最重磅更新当属GPTs&#xff0c;多模态API&#xff0c;未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义&#xff0c;不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车…

【Mysql系列】LAG与LEAD开窗函数

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

怎么查看虚拟机的网关

1、点击编辑&#xff0c;再选择虚拟网络编辑器 2、选择VMnet8&#xff0c;点击NAT设置 3、查看网关IP