EI论文程序:Adaboost-BP神经网络的回归预测算法,可作为深度学习对比预测模型,丰富实验内容,自带数据集,直接运行!

news2025/1/11 9:57:25

适用平台:Matlab 2021及以上

本程序参考中文EI期刊《基于Adaboost的BP神经网络改进算法在短期风速预测中的应用》,程序注释清晰,干货满满,下面对文章和程序做简要介绍。

为了提高短期风速预测的准确性,论文提出了使用Adaboost算法来增强BP神经网络算法的方法。Adaboost算法是一种强大的学习算法,它通过组合弱学习器来提高整体预测能力。论文通过示例分析展示了Adaboost-BP神经网络方法在1到2小时风速预测中相比其他算法:ARMA、BP等具有更高的准确性,并强调了该方法在工程应用上的价值。

Adaboost-BP是一种集成学习方法,结合了Adaboost和BP(Back Propagation)神经网络的原理。Adaboost是一种Boosting算法,它通过集成多个弱预测器(通常是简单的学习器),以提高整体模型的性能。BP神经网络是一种常见的人工神经网络,用于模拟和学习复杂的非线性关系。

以下是Adaboost-BP的原理:

Adaboost原理:

Adaboost的核心思想是通过迭代训练一系列弱预测器,并赋予每个预测器一个权重,以调整其在最终模型中的贡献。

在每次迭代中,Adaboost调整训练样本的权重,使之前分类错误的样本在下一轮得到更多关注。

最终,所有弱预测器的预测结果通过加权求和得到最终模型的输出。

BP神经网络原理:

BP神经网络是一种前馈神经网络,它由输入层、隐藏层(可以有多层)、输出层组成。

神经网络通过前向传播计算输出,然后通过反向传播调整权重,以最小化预测误差。

反向传播使用梯度下降法更新权重,通过计算损失函数对权重的偏导数来确定梯度方向。

Adaboost-BP的结合:

在Adaboost-BP中,每个迭代中使用一个BP神经网络作为弱预测器。

初始时,所有样本的权重相等。

在每轮训练中,使用当前样本权重训练BP神经网络,并根据网络的性能(预测准确度)调整权重。

训练完一个BP神经网络后,计算其在整体模型中的权重,然后更新样本权重,以便下一轮训练中更关注之前预测精度低的样本。

重复这个过程直到达到预定的迭代次数或模型性能满足要求。

最终模型的预测:

最终模型是所有弱预测器的加权组合,每个弱预测器的权重由其在训练过程中的性能确定。

预测时,通过对每个弱预测器的预测结果进行加权求和,得到最终的模型输出。

Adaboost-BP的优点在于它结合了Adaboost和神经网络的优势,能够更好地处理复杂的非线性关系,提高模型的泛化能力。然而,也需要注意到该方法在训练过程中可能会更加复杂和耗时。

程序输出结果:

Adaboost-BP部分代码

%% Adaboost-BP预测
K=10;
for i=1:K
    
    %弱预测器训练
    net=newff(inputn,outputn,5);
    net.trainParam.epochs=20;
    net.trainParam.lr=0.1;
    net=train(net,inputn,outputn);
    
    %弱预测器预测
    an1=sim(net,inputn);
    T_sim1=mapminmax('reverse',an1,outputps);
    
    %预测误差
    erroryc(i,:)=T_train-T_sim1;

    %测试数据预测
    inputn1=mapminmax('apply',P_test ,inputps);
    an2=sim(net,inputn1);
    test_simu(i,:)=mapminmax('reverse',an2,outputps);% 各个弱预测器预测结果
    
    %调整D值
    Error(i)=0;
    for j=1:nn
        if abs(erroryc(i,j))>0.2  %较大误差
            Error(i)=Error(i)+D(i,j);
            D(i+1,j)=D(i,j)*1.1;
        else
            D(i+1,j)=D(i,j);
        end
    end
    
    %计算弱预测器权重
    at(i)=0.5/exp(abs(Error(i)));
    
    %D值归一化
    D(i+1,:)=D(i+1,:)/sum(D(i+1,:));
end

%% 强预测器预测
at=at/sum(at);

%% 强学习器学习预测结果
T_sim2=at*test_simu;

%%  计算各项误差参数 
error = T_sim2-T_test;               % 测试值和真实值的误差  
[~,len]=size(T_test);                % len获取测试样本个数,数值等于testNum,用于求各指标平均值
SSE1=sum(error.^2);                  % 误差平方和
MAE1=sum(abs(error))/len;            % 平均绝对误差
MSE1=error*error'/len;               % 均方误差
RMSE1=MSE1^(1/2);                    % 均方根误差
MAPE1=mean(abs(error./T_test));      % 平均百分比误差
r=corrcoef(T_test,T_sim2);           % corrcoef计算相关系数矩阵,包括自相关和互相关系数
R1=r(1,2);    

%%  绘图
figure
subplot(2, 1, 1)
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['MAPE=' num2str(MAPE1)]};
title(string)
xlim([1, M])
grid

subplot(2, 1, 2)
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['MAPE=' num2str(MAPE1)]};
title(string)
xlim([1, N])
grid

部分图片来源于网络,侵权联系删除!

欢迎感兴趣的小伙伴关注下方公众号获得完整版代码,小编会继续推送更有质量的学习资料、文章和程序代码!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1231789.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python-----PyInstaller的简单使用

PyInstaller简介 PyInstaller是一个Python库,可以将Python应用程序转换为独立的可执行文件。PyInstaller支持跨平台,可以在Windows、Linux和MacOS上生成可执行文件。 PyInstaller会分析Python程序,并将程序打包成一个完整的可执行文件&…

C练习题_14

一、单项选择题(本大题共 20小题,每小题 2分,共 40分。在每小题给出的四个备选项中,选出一个正确的答案,并将所选项前的字母填写在答题纸的相应位置上。) 以下叙述不正确的是() A.一个C源程序可…

ES6有何新特性?(下篇)

目录 函数参数的默认值设置 rest参数 扩展运算符 Symbol 迭代器 生成器 Promise Class 数值扩展 对象方法扩展 模块化 大家好呀!今天这篇文章继续为大家介绍ES6的新特性,上上上篇文章介绍了一部分,这篇文章会将剩下的部分新增的特…

【grafana | clickhouse】实现展示多折线图

说明: 采用的是 Visualizations 的 Time series,使用的 clickhouse 数据源 在工作中遇到了一个需求,写好了代码,需要在grafana上展示在一个项目中所有人的,随时间的代码提交量变化图 目前遇到的问题:展示…

异步爬取+多线程+redis构建一个运转丝滑且免费http-ip代理池 (三)

内容提要: 如果说,爬取网页数据的时候,我们使用了异步,那么将数据放入redis里面,其实也需要进行异步;当然,如果使用多线程或者redis线程池技术也是可以的,但那会造成冗余; 因此,在测试完多线程redis搭配异步爬虫的时候,我发现效率直接在redis这里被无限拉低下来! 因此: 最终的r…

ISP--Black Level Correction(黑电平矫正)

图像的每一个像素点都是由一个光电二极管控制的,由二极管将电信号,转换为数字信号。 那么,我们知道了,图像的像素值是与电信号强度相关的。但是,我们得知道,每一个光电二极管要想工作,都得有一定…

vue3 setup展示数据

效果图 1.创建数据 content.js import { reactive } from vueconst data reactive({color:red,title: 二十四节气,subTitle: 节气,是干支历中表示自然节律变化以及确立“十二月建”(月令)的特定节令。,list: [{name: "立春",con…

MATLAB | 官方举办的动图绘制大赛 | 第二周赛情回顾

今天带来一下MATHWORKS官方举办的迷你黑客大赛第三期(MATLAB Flipbook Mini Hack)的最新进展!!目前比赛已经进行了两周非常荣幸能够成为第一周的阶段性获奖者: 本来并不打算每周进行一次赛况讲解,但是由于字符限制改成了2000&…

竞赛 题目:基于深度学习的中文汉字识别 - 深度学习 卷积神经网络 机器视觉 OCR

文章目录 0 简介1 数据集合2 网络构建3 模型训练4 模型性能评估5 文字预测6 最后 0 简介 🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的中文汉字识别 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! &a…

原理Redis-Dict字典

Dict 1) Dict组成2) Dict的扩容3) Dict的收缩4) Dict的rehash5) 总结 1) Dict组成 Redis是一个键值型(Key-Value Pair)的数据库,可以根据键实现快速的增删改查。而键与值的映射关系正是通过Dict来实现的。 Dict由三部分组成,分别…

MobaXterm如何连接CentOS7的Linux虚拟机?Redis可视化客户端工具如何连接Linux版Redis?

一、打开Lunix虚拟机,进入虚拟机中,在终端中输入ifconfig,得到以下信息,红框中为ip地址 二、打开MobaXterm,点击session 选择SSH,在Remote host中输入linux得到的IP地址,Specify username中可起一个任意的连接名称。 输入密码 四、…

YOLO改进系列之注意力机制(GAM Attention模型介绍)

模型结构 为了提高计算机视觉任务的性能,人们研究了各种注意力机制。然而以往的方法忽略了保留通道和空间方面的信息以增强跨维度交互的重要性。因此,liu提出了一种通过减少信息弥散和放大全局交互表示来提高深度神经网络性能的全局注意力机制。作者的目…

一起Talk Android吧(第五百五十五回:Retrofit中的注解)

文章目录 1. 概念介绍2. 注解的分类与功能2.1 方法类注解2.2 参数类注解3. 内容总结各位看官们大家好,上一回中分享了一个Retrofit使用错误的案例,本章回中将 介绍Retrofit请求中的注解。闲话休提,言归正转,让我们一起Talk Android吧! 1. 概念介绍 我们在前面章回中介绍R…

这些来自各领域的全新机器人技术,你了解吗?

原创 | 文 BFT机器人 01 人机交互的新工具 在人机交互领域,来自欧洲各地的研究人员开发了一种名为HEUROBOX的新工具,用于评估交互。HEUROBOX提供了84个基本启发式和228个高级启发式,用于评估人机交互的各个方面,如安全性、人体工…

在使用tomcat运行项目时,遇到端口80被占用的情况问题解决

问题描述&#xff1a;Failed to initialize end point associated with ProtocolHandler ["http-bio-80"] java.net.BindException: Address already in use: NET_Bind <null>:80 在学习springmvc的时候&#xff0c;跟着黑马视频进行学习&#xff0c;结果&…

vue.js 短连接 动态连接

有这么一种场景&#xff0c;我们实现了某个业务&#xff0c;现在需要将这个业务连接对外推广以期实现我们的运营、推广、佣金目的&#xff0c;那么我们如何实现呢&#xff1f; 比如这个页面连接为&#xff1a; https://mp.domain.com/user/creation/editor?spm1&userno12…

车辆限迁查询API——查询您的车辆是否限制迁入迁出

随着城市的快速发展和人们生活水平的提高&#xff0c;车辆的使用量也不断增加。而随之而来的问题也愈发突出&#xff0c;其中之一就是车辆的限迁问题。 比如&#xff0c;在一些大城市&#xff0c;为了减少交通拥堵和空气污染&#xff0c;政府采取了限制车辆迁入迁出的措施&…

值得学习的演示文稿制作范例

1,在第一张幻灯片前插入1张新幻灯片,设置幻灯片大小为“全屏显示(16:9) ”;为整个演示文稿应用“离子会议室”主题,放映方式为“观众自行浏览”;除了标1题幻灯片外其它每张幻灯片中的页脚插入“晶泰来水晶吊坠”七个字。 2,第一张幻灯片的版式设置为“标题幻灯片”,主标题为“…

考情实况系列:把控考场节奏,从容拿下Datacom HCIE认证

大家好&#xff0c;我是誉天的数通学员&#xff0c;前段时间刚刚通过了HCIE认证考试&#xff0c;这里给大家分享一下我的考试经验与心得&#xff0c;希望对大家有所帮助。 我预约的是11月3日的杭州考场&#xff0c;考试前一天我就到了杭州&#xff0c;在中医药大学地铁站边上的…

接口测试知识点问答

一.什么是接口&#xff1f; 接口测试主要用于外部系统与系统之间以及内部各个子系统之间的交互点&#xff0c;定义特定的交互点&#xff0c;然后通过这些交互点来&#xff0c;通过一些特殊的规则也就是协议&#xff0c;来进行数据之间的交互。 二.接口都有哪些类型&#xff1f…