深度学习人体跌倒检测 -yolo 机器视觉 opencv python 计算机竞赛

news2024/9/20 14:23:27

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的人体跌倒检测算法研究与实现 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1.前言

人体跌倒是人们日常生活中常见姿态之一,且跌倒的发生具有随机、难以预测的特点;其次,跌倒会给人体造成不同程度的伤害,很多人跌倒后由于得不到及时的救助而加重受到的伤害,甚至出现残疾或者死亡的情况;同时随着人口老龄化问题的日渐加剧,跌倒已经成为了我国65周岁以上老人受伤致死的主要原因。因此,跌倒事件严重影响着人们的身体健康,跌倒检测具有十分重要的研究意义。

2.实现效果

跌倒效果

在这里插入图片描述

站立、蹲坐效果

在这里插入图片描述

在这里插入图片描述

3.相关技术原理

3.1卷积神经网络

简介

CNN 是目前机器用来识别物体的图像处理器。CNN
已成为当今自动驾驶汽车、石油勘探和聚变能研究领域的眼睛。在医学成像方面,它们可以帮助更快速发现疾病并挽救生命。得益于 CNN 和递归神经网络
(RNN),各种 AI 驱动型机器都具备了像我们眼睛一样的能力。经过在深度神经网络领域数十年的发展以及在处理海量数据的 GPU
高性能计算方面的长足进步,大部分 AI 应用都已成为可能。

原理

人工神经网络是一个硬件和/或软件系统,模仿神经元在人类大脑中的运转方式。卷积神经网络 (CNN)
通常会在多个全连接或池化的卷积层中应用多层感知器(对视觉输入内容进行分类的算法)的变体。

CNN
的学习方式与人类相同。人类出生时并不知道猫或鸟长什么样。随着我们长大成熟,我们学到了某些形状和颜色对应某些元素,而这些元素共同构成了一种元素。学习了爪子和喙的样子后,我们就能更好地区分猫和鸟。

神经网络的工作原理基本也是这样。通过处理标记图像的训练集,机器能够学习识别元素,即图像中对象的特征。

CNN
是颇受欢迎的深度学习算法类型之一。卷积是将滤波器应用于输入内容的简单过程,会带来以数值形式表示的激活。通过对图像反复应用同一滤波器,会生成名为特征图的激活图。这表示检测到的特征的位置和强度。

卷积是一种线性运算,需要将一组权重与输入相乘,以生成称为滤波器的二维权重数组。如果调整滤波器以检测输入中的特定特征类型,则在整个输入图像中重复使用该滤波器可以发现图像中任意位置的特征。

在这里插入图片描述

关键代码

基于tensorflow的代码实现



    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    mnist = input_data.read_data_sets('MNIST_data_bak/', one_hot=True)
    sess = tf.InteractiveSession()
    
    # 截断的正太分布噪声,标准差设为0.1
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)


    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    # 卷积层和池化层也是接下来要重复使用的,因此也为它们定义创建函数
    # tf.nn.conv2d是TensorFlow中的2维卷积函数,参数中x是输入,W是卷积的参数,比如[5, 5, 1, 32]
    # 前面两个数字代表卷积核的尺寸,第三个数字代表有多少个channel,因为我们只有灰度单色,所以是1,如果是彩色的RGB图片,这里是3
    # 最后代表核的数量,也就是这个卷积层会提取多少类的特征
    
    # Strides代表卷积模板移动的步长,都是1代表会不遗漏地划过图片的每一个点!Padding代表边界的处理方式,这里的SAME代表给
    # 边界加上Padding让卷积的输出和输入保持同样SAME的尺寸
    def conv2d(x, W):
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


    # tf.nn.max_pool是TensorFlow中的最大池化函数,我们这里使用2*2的最大池化,即将2*2的像素块降为1*1的像素
    # 最大池化会保留原始像素块中灰度值最高的那一个像素,即保留最显著的特征,因为希望整体上缩小图片尺寸,因此池化层
    # strides也设为横竖两个方向以2为步长。如果步长还是1,那么我们会得到一个尺寸不变的图片
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')


# 因为卷积神经网络会利用到空间结构信息,因此需要将1D的输入向量转为2D的图片结构,即从1*784的形式转为原始的28*28的结构
# 同时因为只有一个颜色通道,故最终尺寸为[-1, 28, 28, 1],前面的-1代表样本数量不固定,最后的1代表颜色通道数量
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])

# 定义我的第一个卷积层,我们先使用前面写好的函数进行参数初始化,包括weights和bias,这里的[5, 5, 1, 32]代表卷积
# 核尺寸为5*5,1个颜色通道,32个不同的卷积核,然后使用conv2d函数进行卷积操作,并加上偏置项,接着再使用ReLU激活函数进行
# 非线性处理,最后,使用最大池化函数max_pool_2*2对卷积的输出结果进行池化操作
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

# 第二层和第一个一样,但是卷积核变成了64
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

# 因为前面经历了两次步长为2*2的最大池化,所以边长已经只有1/4了,图片尺寸由28*28变成了7*7
# 而第二个卷积层的卷积核数量为64,其输出的tensor尺寸即为7*7*64
# 我们使用tf.reshape函数对第二个卷积层的输出tensor进行变形,将其转成1D的向量
# 然后连接一个全连接层,隐含节点为1024,并使用ReLU激活函数
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# 防止过拟合,使用Dropout层
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 接 Softmax分类
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# 定义损失函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),
                                              reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))


3.1YOLOV5简介

基于卷积神经网络(convolutional neural network, CNN)的目标检测模型研究可按检测阶段分为两类,一 类 是 基 于 候 选 框
的 两 阶 段 检 测 , R-CNN 、 Fast R-CNN、Faster R-CNN、Mask R-CNN都是基于
目标候选框的两阶段检测方法;另一类是基于免候选框的单阶段检测,SSD、YOLO系列都是典型的基于回归思想的单阶段检测方法。

YOLOv5 目标检测模型 2020年由Ultralytics发布的YOLOv5在网络轻量化 上贡献明显,检测速度更快也更加易于部署。与之前
版本不同,YOLOv5 实现了网络架构的系列化,分别 是YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、
YOLOv5x。这5种模型的结构相似,通过改变宽度倍 数(Depth multiple)来改变卷积过程中卷积核的数量, 通 过 改 变 深 度 倍 数
(Width multiple) 来 改 变 BottleneckC3(带3个CBS模块的BottleneckCSP结构)中
C3的数量,从而实现不同网络深度和不同网络宽度之 间的组合,达到精度与效率的平衡。YOLOv5各版本性能如图所示:

在这里插入图片描述

模型结构图如下:

在这里插入图片描述

3.2 YOLOv5s 模型算法流程和原理

YOLOv5s模型主要算法工作流程原理:

(1) 原始图像输入部分加入了图像填充、自适应 锚框计算、Mosaic数据增强来对数据进行处理增加了 检测的辨识度和准确度。

(2) 主干网络中采用Focus结构和CSP1_X (X个残差结构) 结构进行特征提取。在特征生成部分, 使用基于SPP优化后的SPPF结构来完成。

(3) 颈部层应用路径聚合网络[22](path-aggregation network, PANet)和CSP2_X进行特征融合。

(4) 使用GIOU_Loss作为损失函数。

关键代码:

4.数据集处理

获取摔倒数据集准备训练,如果没有准备好的数据集,可自己标注,但过程会相对繁琐

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

3.1 数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

3.2 数据保存

点击save,保存txt。

在这里插入图片描述

5.模型训练

配置超参数
主要是配置data文件夹下的yaml中的数据集位置和种类:

在这里插入图片描述

配置模型
这里主要是配置models目录下的模型yaml文件,主要是进去后修改nc这个参数来进行类别的修改。

在这里插入图片描述

目前支持的模型种类如下所示:

在这里插入图片描述

训练

如果上面的数据集和两个yaml文件的参数都修改好了的话,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1229842.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

内网穿透的应用-如何在Docker中部署MinIO服务并结合内网穿透实现公网访问本地管理界面

文章目录 前言1. Docker 部署MinIO2. 本地访问MinIO3. Linux安装Cpolar4. 配置MinIO公网地址5. 远程访问MinIO管理界面6. 固定MinIO公网地址 前言 MinIO是一个开源的对象存储服务器,可以在各种环境中运行,例如本地、Docker容器、Kubernetes集群等。它兼…

企业微信机器人定时发送图文信息,后续无需人工操作

企业微信群机器人是企业微信的内置功能,可以理解为是一个群提醒通知工具,接收数据并自动发送信息到企业微信群中。 数环通实现打通定时器和企业微信机器人的对接,定时执行自动化流程,无需人工干预,实现工作流程自动化&…

大型 APP 的性能优化思路

做客户端开发都基本都做过性能优化,比如提升自己所负责的业务的速度或流畅性,优化内存占用等等。但是大部分开发者所做的性能优化可能都是针对中小型 APP 的,大型 APP 的性能优化经验并不会太多,毕竟大型 APP 就只有那么几个&…

UE 材质,如何只取0~1之间的值,其余值抛弃

假如0~1,floor为0,abs为0,Saturate为0,1-x为1,很好 假如1~2,floor为1,abs为1,Saturate为1,1-x为0,很好 假如2~3,floor为2,abs为2&am…

拼多多API接口,百亿补贴商品详情接口系列

随着互联网的快速发展,电子商务在日常生活中扮演着越来越重要的角色。拼多多,作为中国领先的社交电商巨头,以其独特的商业模式和创新的API接口,为广大开发者提供了一个全新的电商生态系统。本文将详细介绍拼多多的API接口及其应用…

打印工具HandyPrint Pro Mac中文版软件特点

HandyPrint Pro Mac是一款打印工具,它支持AIrPrint协议,可以让用户在iPhone、iPad、iPod等设备上进行打印操作,只需要将这些设备连接到Mac电脑的WiFi网络中即可实现打印功能。 ​ HandyPrint Pro Mac软件特点 简单易用:用户只需…

汽车级全保护型六路半桥驱动器NCV7708FDWR2G 原理、参数及应用

NCV7708FDWR2G 是一款全保护型六路半桥驱动器,特别适用于汽车和工业运动控制应用。六个高压侧和低压侧驱动器可自由配置,也可单独控制。因此可实现高压侧、低压侧和 H 桥控制。H 桥控制提供正向、逆向、制动和高阻抗状态。驱动器通过标准 SPI 接口进行控…

极速进化,融合“新“生 | StarRocks Summit 2023 技术交流峰会圆满落幕

2023年11月17日,由 StarRocks 社区发起、镜舟科技主办的 StarRocks 年度大型技术交流峰会 StarRocks Summit 2023 在上海成功举行。 本次峰会以「极速进化,融合"新"生」为主题,40余场分享演讲在全天密集开展,来自平安银…

软件项目可行性研究报告

一、可行性研究报告 1.1编写目的 1.2项目背景 1.3定义 1.4参考资料 2.可行性研究的前提 2.1要求 2.2目标 2.3条件、假定和限制 2.4可行性研究方法 2.5决定可行性的主要因素 3.对现有系统的分析 3.1处理流程和数据流程 3.2工作负荷 3.3费用…

阿里云ack集群升级流程

最近一直在升级过期的ack 集群版本 从1.22升级到1.24.。 参考: 升级流程、方式及所需时间

LeetCode207.课程表

看完题我就想,这不就是进程里面的死锁问题嘛,进程1等进程2释放锁,进程2等进程3释放锁,进程3等进程1释放锁,这就造成了死锁。或者是spring中的循环依赖问题,BeanA的初始化需要初始化一个BeanB,Be…

php 时区查看和设置

php的时区&#xff0c;关系到相关时间函数的结果 其他相关&#xff1a; linux时区设置&#xff1a;链接 pgsql时区设置&#xff1a; 一、查看可以用的时区列表 新建一个php文件&#xff0c;输入下面程序即可 <?php echo "<pre>"; var_dump(timezone_id…

时间序列预测(8) — Informer模型原理

目录 0 摘要 1 引言 2 定义 3 方法 3.1 高效的自注意力机制 3.2 稀疏度度量 3.3 ProbSparse稀疏自注意力机制 3.4 Encoder编码器 3.5 Decoder解码 参考视频&#xff1a;Informer原理及代码解析_哔哩哔哩_bilibili 0 摘要 长序列时间序列预测&#xff08;LSTF&#x…

算法-二叉树-简单-二叉树的最大和最小深度

记录一下算法题的学习7 二叉树的最大深度 题目&#xff1a;给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;3 示例分析&#xff…

计算机毕业设计选题推荐-家庭理财微信小程序/安卓APP-项目实战

✨作者主页&#xff1a;IT研究室✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…

如何进行手动脱壳

脱壳的目的就是找到被隐藏起来的OEP&#xff08;入口点&#xff09; 这里我一共总结了三种方法&#xff0c;都是些自己的理解希望对你们有用 单步跟踪法 一个程序加了壳后&#xff0c;我们需要找到真正的OEP入口点&#xff0c;先运行&#xff0c;找到假的OEP入口点后&#x…

Java零基础-Maven项目构建(最详细)

【Maven】 1.当前开发中存在的问题 1.1. 一个项目就是一个工程 如果项目非常庞大,就不适合继续使用package划分模块.最好是每一个模块对应一个项目,利于分工协作,也利于项目针对性能化的部署. 1.2. 项目中需要的jar包必须拷贝 项目中的jar包需要手动"复制" "粘…

定时关机软件哪个好?定时关机软件大盘点

在生活和工作中&#xff0c;我们可以使用定时关机软件来定时关闭电脑&#xff0c;以实现对电脑的控制。那么&#xff0c;定时关机软件哪个好呢&#xff1f;下面我们就来了解一下。 定时关机软件的作用 定时关机软件可以帮助用户在预设的时间自动关闭电脑。这对于那些需要在特…

基于Docker的安装和配置Canal

基本介绍 Canal介绍&#xff1a;Canal 是用 Java 开发的基于数据库增量日志解析&#xff0c;提供增量数据订阅&消费的中间件&#xff08;数据库同步需要阿里的 Otter 中间件&#xff0c;基于 Canal&#xff09;。 Canal背景&#xff1a;阿里巴巴 B2B 公司&#xff0c;因为…

buildadmin+tp8表格操作(7.1)表格的事件监听(el-table中的事件)

因为buildAdmin是封装的 el-table的组件&#xff0c;所以el-table中的事件&#xff0c; 也是可以使用的&#xff0c; 两者有几个事件是有共同的&#xff08;比如 双击事件&#xff09;&#xff0c; 这时可以根据自己的需要自行选择 以下代码是 buildadmin 使用 el-table中的事…