Linux | C语言中volatile关键字的理解

news2024/11/17 20:26:42

目录

前言

一、代码引入

二、现象解释

三、具体引用


前言

        本章主要讲解介绍volatile关键的作用与使用场合;深刻理解volatile关键字;本文你需要有信号相关的基础知识;

Linux | 信号-CSDN博客

一、代码引入

        首先,我们来查看下面这段代码;

#include <iostream>
#include <signal.h>

// 定义全局变量
int flag = 1;

void handler(int signum)
{
    (void)(signum); // 防止编译器警告
    std::cout << "change before flag:" << flag << std::endl;
    flag = 0;
    std::cout << "change after flag:" << flag << std::endl;
}

int main()
{
    // 对2号信号捕捉
    signal(SIGINT, handler);
    
    // 死循环
    while(flag);

    std::cout << "run here..." << std::endl;
    return 0;
}

        当我们发送2号信号时,全局变量flag被改为了0,然后循环条件不满足,打印 run here 后退出;我们运行查看结果是否满足我们预期结果;如下所示;

        第一个红色框起来的是我们编译程序所用指令;第二个红色框起来的是当我们按下 ctrl + c 发送2号信号时,程序如我么预期所料;

        接下来,我们来介绍以下 gcc/g++ 的几个编译选项;如下图所示;

        -O1、-O2、-O3分别为编译时三个不同等级的优化,其中优化程度由低到高,我们选择最高等级,再次编译运行代码;如下所示;

        神奇的一幕发生了,我们发现我们无论按多少次 ctrl + c 都无法退出程序,我们发送2号信号,也被处理了,我们的全局变量flag不是被置为0了吗?为什么还是没有办法退出while循环呢?下面我们来仔细讲解这个神奇现象;

二、现象解释

        实际上,这就是跟我们的编译器优化有关,我们把视角拉到代码中;如下图所示;

        我们的while循环判断分为以上三个步骤,而当我们编译时对代码采用 O3 级别的优化时,我们的编译器检测到循环中没有对全局变量flag进行修改,因此直接将上面的步骤优化成了如下所示;

        故即使我们发送2号信号将内存中的flag更改,但是判断时时候,依旧直接判断寄存器中flag的那个值;所以才会看到上述那种神奇现象;

三、具体引用

        我们本文的主角volatile关键字就是为了防止这种编译器过度优化的现象,我们可以在定义flag变量的前面加上一个 volatile关键字,这样可以防止我们的变量flag参与被编译器编译的代码过度优化;

#include <iostream>
#include <signal.h>

// 定义全局变量(增加volatile关键字)
volatile int flag = 1;

void handler(int signum)
{
    (void)(signum); // 防止编译器警告
    std::cout << "change before flag:" << flag << std::endl;
    flag = 0;
    std::cout << "change after flag:" << flag << std::endl;
}

int main()
{
    // 对2号信号捕捉
    signal(SIGINT, handler);
    
    // 死循环
    while(flag);

    std::cout << "run here..." << std::endl;
    return 0;
}

        代码几乎完全相同,就加入了一个volatile关键字,避免了这种编译器过度优化现象;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1226614.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CICD 持续集成与持续交付(2)

目录 gitlab 部署 jenkins 部署 配置 实时触发 自动化构建docker镜像 通过ssh插件交付任务 添加jenkins节点 RBAC pipeline jenkins结合ansible参数化构建 安装ansible 新建gitlab项目 jenkins新建项目playbook gitlab 部署 虚拟机最小需求&#xff1a;4G内存 4核cpu 下载&…

年货FPS大作,艾尔莎EA B450M-E和你玩转《使命召唤20》

说到动视旗下的《使命召唤》系列&#xff0c;相信大家都不陌生&#xff0c;它以出色爽快的游戏体验以及精良的画面著称&#xff0c;而且每年一部的更新节奏也是如今为数不多的“年货”游戏之一了。时至今日&#xff0c;该系列已经来到了第20部作品&#xff0c;也就是《使命召唤…

第20章 数据库编程

通过本章需要理解JDBC的核心设计思想以及4种数据库访问机制&#xff0c;理解数据库连接处理流程&#xff0c;并且可以使用JDBC进行Oracle数据库的连接&#xff0c;理解工厂设计模式在JDBC中的应用&#xff0c;清楚地理解DriverManager类的作用&#xff0c;掌握Connection、Prep…

简历技术栈redis点

熟悉Redis常见的数据类型以及缓存问题&#xff0c;如缓存穿透、雪崩 、击穿等 Redis五种数据类型 Redis常用命令 查看所有 keys * 字符串类型string 常用命令 举例&#xff1a; 放置一个字符串数据到redis中&#xff0c;先为数据定义一个名称&#xff0c;比如name,age等&am…

⑩⑤【DB】详解MySQL存储过程:变量、游标、存储函数、循环,判断语句、参数传递..

个人简介&#xff1a;Java领域新星创作者&#xff1b;阿里云技术博主、星级博主、专家博主&#xff1b;正在Java学习的路上摸爬滚打&#xff0c;记录学习的过程~ 个人主页&#xff1a;.29.的博客 学习社区&#xff1a;进去逛一逛~ MySQL存储过程 1. 介绍2. 使用3. 变量①系统变…

OceanBase:Zone管理

OceanBase 集群由若干个 Zone 组成。从物理层面来讲&#xff0c;一个 Zone 通常是一个独立的物理部署单元&#xff0c;可以是一个数据中心&#xff08;IDC&#xff09;或者云上的一个 Zone&#xff08;可用区&#xff09;&#xff0c;也可以是一个单独的机架&#xff08;Rack&a…

大模型的视觉能力

摘要&#xff1a; 计算机视觉引领了人工智能中深度学习的采用&#xff0c;这表明在大型注释数据集上预训练的模型可以转移到许多下游设置。现在&#xff0c;在网络规模的原始数据而不是策划的数据集上进行预训练&#xff0c;基础大模型在计算机视觉中正在崛起。这些模型…

时间序列与 statsmodels:预测所需的基本概念(2)

时间序列与 statsmodels&#xff1a;预测所需的基本概念&#xff08;2&#xff09; 维托米尔约万诺维奇 跟随 出版于 走向发展 4 分钟阅读 2022 年 1 月 31 日 8 一、说明 在使时间序列平稳后&#xff0c;在本博客中我们应用 SARIMAX 预测并进行深入解释。 二、关于平稳性 …

C++多线程编程(2):四种线程管理方法

文章首发于我的个人博客&#xff1a;欢迎大佬们来逛逛 文章目录 线程管理get_idsleep_forsleep_untilyield 线程管理 有一个this_thread的名称空间中定义了许多的线程管理方法&#xff1a; get_id&#xff1a;获取当前线程idsleep_for&#xff1a;当前线程休眠一段时间sleep_…

计算机组成原理-双端口RAM和多模块存储器

文章目录 存取周期总览双端口RAM多体并行存储器低地址交叉编址有多少个存储体合适&#xff08;体号&#xff09;多模块存储器&#xff08;多体存储器&#xff09;总结实际场景 存取周期 总览 双端口RAM RAM&#xff1a;用于主存或高速缓存&#xff0c;断电数据丢失 多体并行…

实验五:Java多线程程序设计

一、线程接力 编写一个应用程序&#xff0c;除了主线程外&#xff0c;还有三个线程&#xff1a;first、second和third。first负责模拟一个红色的按钮从坐标&#xff08;10&#xff0c;60&#xff09;运动到&#xff08;100&#xff0c;60&#xff09;&#xff1b;second负责模…

自动 ARIMA 超参数搜索

一、介绍 这种用于自动超参数搜索进行预测的开发方法可能会花费大量时间&#xff0c;但它可以带来回报&#xff0c;因为当您找到预测模型的最佳参数时&#xff0c;它将节省时间并提高预测的精度。此外&#xff0c;手动尝试可能会花费您最多的时间&#xff0c;但这种方法在某些情…

不知道如何制作产品图册的,赶紧收藏住!

产品图册是展示产品外观、功能和特点的重要工具&#xff0c;对于销售和推广产品至关重要。然而&#xff0c;制作一本高质量的产品图册并不是一件容易的事情。如果你没有经验或者不确定如何着手&#xff0c;那么这篇文章将为你提供一些实用的建议和技巧&#xff0c;帮助你轻松制…

Java调用com组件之jacob

一、背景介绍 现有标准的 win32 com组件&#xff0c;有如下的参数&#xff1a; 属性 值 说明Program IDyinhai.yh_hb_sctrCOM ClassIDCOM ClassName COClass_yh_hb_sctr Interface TypeDual InterfaceInterface NameIyh_hb_sctr 具有一个方法&#xff1a; yh_hb_call( string…

三、LED闪烁

通过LED的闪烁实验&#xff0c;详解Keil MDK中创建mm32单片机的工程的步骤。 1、开发环境 (1)Keil MDK: V5.38.0.0 (2)MCU: mm320163D7P。 2、Keil工程的创建 (1)打开Keil MDK。 (2)点击“Project”→“New μVision Project...”。 (3)选择工程保存地址及工程文件名&…

基于Springboot的地方美食分享网站(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的地方美食分享网站(有报告)。Javaee项目&#xff0c;springboot项目。 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 项目介绍&#xff1a; 采用…

数据挖掘复盘——apriori

read_csv函数返回的数据类型是Dataframe类型 对于Dataframe类型使用条件表达式 dfdf.loc[df.loc[:,0]2]df: 这是一个DataFrame对象的变量名&#xff0c;表示一个二维的表格型数据结构&#xff0c;类似于电子表格或SQL表。 df.loc[:, 0]: 这是使用DataFrame的.loc属性来进行…

devops底层是怎么实现的

DevOps的3大核心基础架构 简而言之&#xff0c;实现DevOps工具链&#xff0c;基本需要3个核心基础架构&#xff1a; SCM配置管理系统 Automation自动化系统 Cloud云&#xff08;或者说可伸缩的、自服务的、虚拟化系统&#xff09; SCM配置管理系统 SCM中所放置的内容又可以再…

系列十、你说你做过JVM调优和参数配置,请问如何盘点JVM系统的默认值?

一、JVM的参数类型 1.1、标配参数 java -versionjava -help 1.2、XX参数 1.2.1、Boolean类型 公式&#xff1a;-XX:或者- 某个属性值 表示开启、-表示关闭 # 是否打印GC收集细节 -XX:PrintGCDetails -XX:-PrintGCDetails# 是否使用串行垃圾收集器 -XX:UseSerialGC -XX:-UseS…

矩阵的QR分解

矩阵的QR分解 GramSchmidt 设存在 B { x 1 , x 2 , … , x n } \mathcal{B}\left\{\mathbf{x}_{1},\mathbf{x}_{2},\ldots,\mathbf{x}_{n}\right\} B{x1​,x2​,…,xn​}在施密特正交化过程中 q 1 x 1 ∣ ∣ x 1 ∣ ∣ q_1\frac{x_1}{||x_1||} q1​∣∣x1​∣∣x1​​ q k …