mysql优化之explain 以及 索引优化

news2025/1/11 6:15:58

Mysql安装文档参考:https://blog.csdn.net/yougoule/article/details/56680952
Explain工具介绍
使用EXPLAIN关键字可以模拟优化器执行SQL语句,分析你的查询语句或是结构的性能瓶颈
在 select 语句之前增加 explain 关键字,MySQL 会在查询上设置一个标记,执行查询会返回执行计划的信息,而不是
执行这条SQL
注意:如果 from 中包含子查询,仍会执行该子查询,将结果放入临时表中
Explain分析示例
参考官方文档:https://dev.mysql.com/doc/refman/5.7/en/explain-output.html

 创建表语句和数据

SET NAMES utf8mb4;
SET FOREIGN_KEY_CHECKS = 0;

-- ----------------------------
-- Table structure for film_actor
-- ----------------------------
DROP TABLE IF EXISTS `film_actor`;
CREATE TABLE `film_actor`  (
  `id` int(0) NOT NULL,
  `film_id` int(0) NOT NULL,
  `actor_id` int(0) NOT NULL,
  `remark` varchar(255) CHARACTER SET utf8mb3 COLLATE utf8mb3_general_ci NULL DEFAULT NULL,
  PRIMARY KEY (`id`) USING BTREE,
  INDEX `idx_film_actor_id`(`film_id`, `actor_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8mb3 COLLATE = utf8mb3_general_ci ROW_FORMAT = Dynamic;

-- ----------------------------
-- Records of film_actor
-- ----------------------------
INSERT INTO `film_actor` VALUES (1, 1, 1, NULL);
INSERT INTO `film_actor` VALUES (2, 1, 2, NULL);
INSERT INTO `film_actor` VALUES (3, 2, 1, NULL);

-- ----------------------------
-- Table structure for film
-- ----------------------------
DROP TABLE IF EXISTS `film`;
CREATE TABLE `film`  (
  `id` int(0) NOT NULL AUTO_INCREMENT,
  `name` varchar(10) CHARACTER SET utf8mb3 COLLATE utf8mb3_general_ci NULL DEFAULT NULL,
  PRIMARY KEY (`id`) USING BTREE,
  INDEX `idx_name`(`name`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 4 CHARACTER SET = utf8mb3 COLLATE = utf8mb3_general_ci ROW_FORMAT = Dynamic;

-- ----------------------------
-- Records of film
-- ----------------------------
INSERT INTO `film` VALUES (3, 'film0');
INSERT INTO `film` VALUES (1, 'film1');
INSERT INTO `film` VALUES (2, 'film2');

-- ----------------------------
-- Table structure for actor
-- ----------------------------
DROP TABLE IF EXISTS `actor`;
CREATE TABLE `actor`  (
  `id` int(0) NOT NULL,
  `name` varchar(45) CHARACTER SET utf8mb3 COLLATE utf8mb3_general_ci NULL DEFAULT NULL,
  `update_time` datetime(0) NULL DEFAULT NULL,
  PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8mb3 COLLATE = utf8mb3_general_ci ROW_FORMAT = Dynamic;

-- ----------------------------
-- Records of actor
-- ----------------------------
INSERT INTO `actor` VALUES (1, 'aa', '2023-11-19 09:28:49');
INSERT INTO `actor` VALUES (2, 'b', '2023-11-19 09:28:49');
INSERT INTO `actor` VALUES (3, 'c', '2023-11-19 09:28:49');
INSERT INTO `actor` VALUES (4, 'a', '2023-11-19 09:28:49');

SET FOREIGN_KEY_CHECKS = 1;

 普通查询

explain select * from film where id = 1;

show warnings;

explain中的列

1. id列

id列的编号是 select 的序列号,有几个 select 就有几个id,id的顺序是按 select 出现的顺序增长的。

id列越大执行优先级越高,id相同则从上往下执行,id为NULL最后执行。

2. select_type列

select_type 指的是查询类型,表示对应行是简单还是复杂的查询。

        1)simple:简单查询。查询不包含子查询和union
 explain select * from film where id = 2;

        2)primary:复杂查询中最外层的 select
        3)subquery:包含在 select 中的子查询(不在 from 子句中)
        4)derived:包含在 from 子句中的子查询

MySQL会将结果存放在一个临时表中,也称为派生表(derived的英文含义)
用这个例子来了解 primary、subquery 和 derived 类型

 set session optimizer_switch='derived_merge=off'; #关闭mysql5.7新特性对衍生表的合并优化
 explain select (select 1 from actor where id = 1) from (select * from film where id = 1) der;
 

id为3的是from后面的派生表,id为2的是select中的子查询,id为1的是最外面也就是最左边的select

 set session optimizer_switch='derived_merge=on'; #还原默认配置

        5)union:在 union 中的第二个和随后的 select

explain select 1 union all select 1;

3. table列

这一列表示 explain 的一行正在访问哪个表。
当 from 子句中有子查询时,table列是 格式,表示当前查询依赖 id=N 的查询,于是先执行id=N 的查询。
当有 union 时,UNION RESULT 的 table 列的值为<union1,2>,1和2表示参与 union 的 select 行id。

 

4. type列

这一列表示关联类型或访问类型,即MySQL决定如何查找表中的行,查找数据行记录的大概范围。
依次从最优到最差分别为:system > const > eq_ref > ref > range > index > ALL
一般来说,得保证查询达到range级别,最好达到ref

NULL:

mysql能够在优化阶段分解查询语句,在执行阶段用不着再访问表或索引。例如:在索引列中选取最小值,可以单独查找索引来完成,不需要在执行时访问表

explain select min(id) from film;

const, system:

mysql能对查询的某部分进行优化并将其转化成一个常量(可以看show warnings 的结果)。用于primary key 或 unique key 的所有列与常数比较时,所以表最多有一个匹配行,读取1次,速度比较快。system是const的特例,表里只有一条元组匹配时为system 

explain extended select * from (select * from film where id = 1) tmp;

explain   select * from (select * from film where id = 1) tmp;

eq_ref:

primary key 或 unique key 索引的所有部分被连接使用 ,最多只会返回一条符合条件的记录。这可能是在const 之外最好的联接类型了,简单的 select 查询不会出现这种 type。

 explain select * from film_actor left join film on film_actor.film_id = film.id;

ref:

相比 eq_ref,不使用唯一索引,而是使用普通索引或者唯一性索引的部分前缀,索引要和某个值相比较,可能会找到多个符合条件的行。

  • 简单 select 查询,name是普通索引(非唯一索引)

explain select * from film where name = 'film1';

  • 关联表查询,idx_film_actor_id是film_id和actor_id的联合索引,这里使用到了film_actor的左边前缀film_id部分。

explain select film_id from film left join film_actor on film.id = film_actor.film_id;

range:

范围扫描通常出现在 in(), between ,> ,<, >= 等操作中。使用一个索引来检索给定范围的行。

explain select * from actor where id > 1;

index:

explain select * from film;
explain select * from film WHERE name = 'aa'

扫描全索引就能拿到结果,一般是扫描某个二级索引(除主键索引的其他索引),这种扫描不会从索引树根节点开始快速查找,而是直接对二级索引的叶子节点遍历和扫描,速度还是比较慢的,这种查询一般为使用覆盖索引,二级索引一般比较小,所以这种通常比ALL快一些。

 index 场景实际是需要优化的,虽然走了索引,但性能不是很高,最好达到ref级别;因为index级别是从左到右遍历索引(磁盘io),例如可以通过分页;如果不添加分页,一次全表查询,若数据量比较大内存有可能会暴掉,

 explain select * from film WHERE name = 'aa'

 添加查询条件 所有类型走了ref 级别 比 index 级别高很多;

mysql 内部优化原则;主键索引(聚簇索引)

二级索引(普通索引)里面有索引字段和主键id;当select 后边所查询的字段在主键索引里面有 在二级索引里面也有,(  例如:select id,name from 表   (id:主键索引 和name:普通索引))此时会优先使用二级索引;原因:普通索引要比主键索引小这里的小 指的是普通索引只存了索引字段的数据,而主键索引存了全部字段的数据;(例如一个表10个字段,主键索引是存储这10个字段的数据,而二级索引只存储主键索引和普通索引所对应的数据);

如果查询是字段部分在二级索引,部分不在二级索引 此时会优先使用主键索引,以为部分没有的字段信息是需要回表二次查询,性能会降低,

ALL:

即全表扫描,扫描你的聚簇索引的所有叶子节点。通常情况下这需要增加索引来进行优化了。

explain select * from actor;

 因为mysql的 innoDB 引擎是 .ibd 文件的聚簇索引(主键索引树);全表扫描实际是扫描这个聚簇索引的根节点;从第一个节点开始扫描;

 explain select * from actor where id = 1;

5. possible_keys列

这一列显示查询可能使用哪些索引来查找。
explain 时可能出现 possible_keys 有列,而 key 显示 NULL 的情况,这种情况是因为表中数据不多,mysql认为索引对此查询帮助不大,选择了全表查询。
如果该列是NULL,则没有相关的索引。在这种情况下,可以通过检查 where 子句看是否可以创造一个适当的索引来提高查询性能,然后用 explain 查看效果。
 

6. key列

这一列显示mysql实际采用哪个索引来优化对该表的访问。
如果没有使用索引,则该列是 NULL。如果想强制mysql使用或忽视possible_keys列中的索引,在查询中使用 forceindex、ignore index。

7. key_len列

这一列显示了mysql在索引里使用的字节数,通过这个值可以算出具体使用了索引中的哪些列。
举例来说,film_actor的联合索引 idx_film_actor_id 由 film_id 和 actor_id 两个int列组成,并且每个int是4字节。通过结果中的key_len=4可推断出查询使用了第一个列:film_id列来执行索引查找。

 explain select * from film_actor where film_id = 2;

key_len计算规则如下:

  • 字符串,char(n)和varchar(n),5.0.3以后版本中,n均代表字符数,而不是字节数,如果是utf-8,一个数字或字母占1个字节,一个汉字占3个字节

        char(n):如果存汉字长度就是 3n 字节
        varchar(n):如果存汉字则长度是 3n + 2 字节,加的2字节用来存储字符串长度,因为varchar是变长字符串

  • 数值类型

    • tinyint:1字节
    • smallint:2字节
    • int:4字节
    • bigint:8字节
  • 时间类型

    • date:3字节
    • timestamp:4字节
    • datetime:8字节
  • 如果字段允许为 NULL,需要1字节记录是否为 NULL

索引最大长度是768字节,当字符串过长时,mysql会做一个类似左前缀索引的处理,将前半部分的字符提取出来做索引。

8. ref列

这一列显示了在key列记录的索引中,表查找值所用到的列或常量,常见的有:const(常量),字段名(例:film.id)

9. rows列

这一列是mysql估计要读取并检测的行数,注意这个不是结果集里的行数

10. Extra列

这一列展示的是额外信息。常见的重要值如下:

        1)Using index:使用覆盖索引

覆盖索引定义:mysql执行计划explain结果里的key有使用索引,如果select后面查询的字段都可以从这个索引的树中获取,这种情况一般可以说是用到了覆盖索引,extra里一般都有using index;覆盖索引一般针对的是辅助索引,整个查询结果只通过辅助索引就能拿到结果,不需要通过辅助索引树找到主键,再通过主键去主键索引树里获取其它字段值。(不需要回表)

 explain select film_id from film_actor where film_id = 1;
 

CREATE TABLE `film_actor` (
  `id` int NOT NULL,
  `film_id` int NOT NULL,
  `actor_id` int NOT NULL,
  `remark` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_film_actor_id` (`film_id`,`actor_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb3;

        2)Using where:使用 where 语句来处理结果,并且查询的列未被索引覆盖;这种需要给name 字段添加索引进行优化

explain select * from actor where name = 'a';

        3)Using index condition:查询的列不完全被索引覆盖,where条件中是一个前导列的范围

explain select * from film_actor where film_id > 1;

        4)Using temporary:mysql需要创建一张临时表来处理查询

  1. actor.name没有索引,此时创建了张临时表来distinct

explain select distinct name from actor;

 actor.name没有索引;是将所有数据未通过索引查出来然后放入一个临时表,通过临时表再去重;

  2.  film.name建立了idx_name索引,此时查询时extra是using index,没有用临时表

explain select distinct name from film;

film 表采用了覆盖索引(查询字段通过覆盖索引),先通过索引查询的时候过滤重复数据,然后再加载到内存,数据是去重后的,通过索引查询效率高;

        5)Using filesort:将用外部排序而不是索引排序,数据较小时从内存排序,否则需要在磁盘完成排序。

这种情况下一般也是要考虑使用索引来优化的。

  1. actor.name未创建索引,会浏览actor整个表,保存排序关键字name和对应的id,然后排序name并检索行记录

explain select * from actor order by name;

 未使用索引,需要先加载到内存或者磁盘,然后再排序,效率低的多;

      2.  film.name建立了idx_name索引,此时查询时extra是using index

explain select * from film order by name;

 使用索引;因为索引已经是拍好序的,所有直接拿出来就可以,不需要再排序;

二、索引最佳实践

示例表

CREATE TABLE `employees` (
    `id` int(11) NOT NULL AUTO_INCREMENT,
    `name` varchar(24) NOT NULL DEFAULT '' COMMENT '姓名',
    `age` int(11) NOT NULL DEFAULT '0' COMMENT '年龄',
    `position` varchar(20) NOT NULL DEFAULT '' COMMENT '职位',
    `hire_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '入职时间',
    PRIMARY KEY (`id`),
    KEY `idx_name_age_position` (`name`,`age`,`position`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8 COMMENT='员工记录表';

INSERT INTO employees(name,age,position,hire_time) VALUES('LiLei',22,'manager',NOW());
INSERT INTO employees(name,age,position,hire_time) VALUES('HanMeimei',23,'dev',NOW());
INSERT INTO employees(name,age,position,hire_time) VALUES('Lucy',23,'dev',NOW());
 

 1.全值匹配

        匹配索引的第一个列

EXPLAIN  SELECT * FROM employees WHERE name= 'LiLei';
EXPLAIN SELECT * FROM employees WHERE name= 'LiLei' AND age = 22;
EXPLAIN SELECT * FROM employees WHERE name= 'LiLei' AND age = 22 AND position ='manager';

 联合索引字段 `name`,`age`,`position`(需要遵循最左前缀原则,

// 按照  `name`,`age`,`position` 的顺序拼接条件,是走索引的

EXPLAIN SELECT * FROM employees WHERE name= 'LiLei' AND age = 22 AND position ='manager';

顺序倒过来 `position` ,`age`,`name`, 任然会走索引,因为mysql 优化器会给优化(这也是遵循最左前缀原则,所谓最左前缀原则是针对b+树的结构,第一层先是按照name排序,第二层按照 age排序,第三层按照 position 排序,如果没有第一层,那么二三层排序毫无意义

EXPLAIN SELECT * FROM employees WHERE position ='manager' AND age = 22 AND name= 'LiLei';

2.最左前缀法则

如果索引了多列,要遵守最左前缀法则。指的是查询从索引的最左前列开始并且不跳过索引中的列。
下面只有第一个走索引

EXPLAIN SELECT * FROM employees WHERE name = 'Bill' and age = 31;
EXPLAIN SELECT * FROM employees WHERE age = 30 AND position = 'dev';
EXPLAIN SELECT * FROM employees WHERE position = 'manager';

3.不在索引列上做任何操作

计算、函数、(自动或手动)类型转换,会导致索引失效而转向全表扫描(8.0函数索引可以解决函数操作使索引失效的问题)(截取name3位数,索引里面都没有,怎么可能回走索引呢)

 EXPLAIN SELECT * FROM employees WHERE left(name,3) = 'LiLei';

日期转化为范围查询可能走索引,可以用这种方式优化下面的查询:
1.给hire_time增加一个普通索引:

ALTER TABLE `employees` ADD INDEX `idx_hire_time` (`hire_time`) USING BTREE ;
EXPLAIN select * from employees where date(hire_time) ='2018‐09‐30';

不走索引

2.转化为日期范围查询 

就可能走索引了,key没有值是优化器认为不用索引更快,但是有可能走索引的

EXPLAIN select * from employees where hire_time >='2023-10-19 12:22:26' and hire_time <='2023-12-19 12:22:26';

4.范围查询的索引列放到最后

因为存储引擎不能使用索引中范围条件右边的列

EXPLAIN SELECT * FROM employees WHERE name= 'LiLei' AND age > 22 AND position ='manager';

索引列是name,age,position,上面key_len没有等于140,说明索引未被充分使用。因为当第二个列是范围,从索引树中可看出第三个列就可能不是顺序的了,所以第三列不能被使用,建议范围查询的索引列放到最后,改成name,position,age

5.尽量使用覆盖索引(只访问索引的查询(索引列包含查询列)),减少 select * 语句

使用覆盖索引可以避免回表的开销
第一个Extra显示使用到了覆盖索引,第二个未使用到;

EXPLAIN SELECT name,age FROM employees WHERE name= 'LiLei' AND age = 23 AND position ='manager';

 EXPLAIN SELECT * FROM employees WHERE name= 'LiLei' AND age = 23 AND position ='manager';

6.mysql在使用不等于(!=或者<>),not in ,not exists 的时候可能无法使用索引会导致全表扫描

EXPLAIN SELECT * FROM employees WHERE name != 'LiLei';

< 小于、 > 大于、 <=、>= 这些,mysql内部优化器会根据检索比例、表大小等多个因素整体评估是否使用索引

7.is null,is not null 一般情况下也无法使用索引

EXPLAIN SELECT * FROM employees WHERE name is null

8.like以通配符开头(‘$abc…’)mysql索引失效会变成全表扫描操作

EXPLAIN SELECT * FROM employees WHERE name like '%Lei'

 前面没 %的走索引   取值索引去前面几个字符,这些字符是有序的;

取值索引去前面几个字符,这些字符是有序的;

EXPLAIN SELECT * FROM employees WHERE name like 'Lei%'

 问题:解决like’%字符串%'索引不被使用的方法?
a)使用覆盖索引,查询字段必须是建立覆盖索引字段

EXPLAIN SELECT name,age,position FROM employees WHERE name like '%Lei%';

9.字符串不加单引号索引失效

 EXPLAIN SELECT * FROM employees WHERE name = 1000;

10.少用or或in,用它查询时,mysql不一定使用索引

mysql内部优化器会根据检索比例、表大小等多个因素整体评估是否使用索引,详见范围查询优化

EXPLAIN SELECT * FROM employees WHERE name = 'LiLei' or name = 'HanMeimei';

11.范围查询优化

给年龄添加单值索引

ALTER TABLE `employees` ADD INDEX `idx_age` (`age`) USING BTREE ;
explain select * from employees where age >=1 and age <=2000;

没走索引原因:mysql内部优化器会根据检索比例、表大小等多个因素整体评估是否使用索引。比如这个例子,可能是由于单次数据量查询过大导致优化器最终选择不走索引
优化方法:可以将大的范围拆分成多个小范围

explain select * from employees where age >=1 and age <=1000;
explain select * from employees where age >=1001 and age <=2000;

还原最初索引状态

ALTER TABLE `employees` DROP INDEX `idx_age`;

三、索引总结表

‐‐m ysql5.7关闭ONLY_FULL_GROUP_BY报错
select version(),@@sql_mode;SET sql_mode=(SELECT REPLACE(@@sql_mode,'ONLY_FULL_GROUP_BY',''))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1226566.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MattML

方法 作者未提供代码

让你彻底学会HBase

让你彻底学会HBase Apache HBase&#xff08;Hadoop DataBase&#xff09;是一个开源的、高可靠性、高性能、面向列&#xff08;这里指列族&#xff0c;非列式存储&#xff09;、可伸缩、实时读写的分布式数据库。利用 Hadoop HDFS 作为其文件存储系统&#xff0c;利用 ZooKee…

图片降噪软件 Topaz DeNoise AI mac中文版功能

Topaz DeNoise AI for Mac是一款专业的Mac图片降噪软件。如果你有噪点的相片&#xff0c;可以通过AI智能的方式来处理掉噪点&#xff0c;让照片的噪点降到最 低。有了Topaz DeNoise AI mac版处理图片更方便&#xff0c;更简单。 Topaz DeNoise AI mac软件功能 无任何预约即可在…

如何将 Docsify 项目部署到 CentOS 系统的 Nginx 中

文章目录 第一步&#xff1a;准备 CentOS 服务器第二步&#xff1a;安装 Node.js 和 Docsify第三步&#xff1a;初始化 Docsify 项目第四步&#xff1a;本地预览 Docsify 项目第五步&#xff1a;配置 Nginx 服务器第六步&#xff1a;重启 Nginx 服务器拓展&#xff1a;使用 HTT…

维修一款20年前的电容测试表VC6013

一、大概情况 在咸鱼市场淘了一台VC6013电感测试表&#xff0c;本来想捡漏的&#xff0c;结果发现是一个大坑&#xff0c;不但被人维修过&#xff0c;还发现被拆了一些ic&#xff0c;网络上也找不到合适的图纸&#xff0c;只找到一份比较接近的图纸&#xff0c;但是比较下来还是…

【飞控调试】DJIF450机架+Pixhawk6c mini+v1.13.3固件+好盈Platinium 40A电调无人机调试

1 背景 由于使用了一种新的航电设备组合&#xff0c;在调试无人机起飞的时候遇到了之前没有遇到的问题。之前用的飞控&#xff08;Pixhawk 6c&#xff09;和电调&#xff08;Hobbywing X-Rotor 40A&#xff09;&#xff0c;在QGC里按默认参数配置来基本就能平稳飞行&#xff0…

java 实现串口通讯

1、引入依赖 <dependency><groupId>org.scream3r</groupId><artifactId>jssc</artifactId><version>2.8.0</version> </dependency>2、配置启动串口 Component public class ContextHolder implements ApplicationContextAw…

vue2中的插槽

vue2中的插槽 props[数学公式]属性: 各种数据类型值。子组件接收到之后做不同的判断实现不同的效果来实现复用性。 插槽&#xff1a;HTML dom元素。 预留属性、预留插槽。 调用语法&#xff1a;单闭合/双闭合。需要传插槽&#xff0c;就用双闭合&#xff1b;不需要就单双都可以…

斯坦福机器学习 Lecture2 (假设函数、参数、样本等等术语,还有批量梯度下降法、随机梯度下降法 SGD 以及它们的相关推导,还有正态方程)

假设函数定义 假设函数&#xff0c;猜一个 x->y 的类型&#xff0c;比如 y ax b&#xff0c;随后监督学习的任务就是找到误差最低的 a 和 b 参数 有时候我们可以定义 x0 1&#xff0c;来让假设函数的整个表达式一致统一 如上图是机器学习中的一些术语 额外的符号&#xf…

【C++初阶】STL详解(三)vector的介绍与使用

本专栏内容为&#xff1a;C学习专栏&#xff0c;分为初阶和进阶两部分。 通过本专栏的深入学习&#xff0c;你可以了解并掌握C。 &#x1f493;博主csdn个人主页&#xff1a;小小unicorn ⏩专栏分类&#xff1a;C &#x1f69a;代码仓库&#xff1a;小小unicorn的代码仓库&…

Python学习(一)基础语法

文章目录 1. 入门1.1 解释器的作用1.2 下载1.3 基础语法输入输出语法与引号注释&#xff1a;变量&#xff1a; 数据类型与四则运算数据类型四则运算数据类型的查看type()数据类型的转换int()、int()、float() 流程控制格式化输出循环与遍历逻辑运算符list遍历字典dict遍历 跳出…

思维模型 鲶鱼效应

本系列文章 主要是 分享 思维模型 &#xff0c;涉及各个领域&#xff0c;重在提升认知。激发竞争&#xff0c;促进创新。 1 鲶鱼效应的应用 1.1 鲶鱼效应在组织管理中的应用 美国通用汽车公司是世界上最大的汽车制造企业之一&#xff0c;它曾经面临着生产效率低下、员工缺乏积…

JAVAEE---计算机是如何组成的

计算机软件硬件 硬件是冯诺依曼体系结构&#xff0c;这个结构的精髓在于将存储和执行分开。 这里存储器内存外存&#xff08;硬盘&#xff0c;u盘&#xff0c;光碟等&#xff09; cpu是计算机的大脑&#xff0c;是计算机最核心的地方。 cpu中央处理&#xff1a;进行算术运算…

【Linux】-进程间通信-匿名管道通信(以及模拟一个进程池)

&#x1f496;作者&#xff1a;小树苗渴望变成参天大树&#x1f388; &#x1f389;作者宣言&#xff1a;认真写好每一篇博客&#x1f4a4; &#x1f38a;作者gitee:gitee✨ &#x1f49e;作者专栏&#xff1a;C语言,数据结构初阶,Linux,C 动态规划算法&#x1f384; 如 果 你 …

16.live555mediaserver-保活机制

live555工程代码路径 live555工程在我的gitee下&#xff08;doc下有思维导图、drawio图&#xff09;&#xff1a; live555 https://gitee.com/lure_ai/live555/tree/master 章节目录链接 0.前言——章节目录链接与为何要写这个&#xff1f; https://blog.csdn.net/yhb1206/art…

.Net中Redis的基本使用

前言 Redis可以用来存储、缓存和消息传递。它具有高性能、持久化、高可用性、扩展性和灵活性等特点&#xff0c;尤其适用于处理高并发业务和大量数据量的系统&#xff0c;它支持多种数据结构&#xff0c;如字符串、哈希表、列表、集合、有序集合等。 Redis的使用 安装包Ser…

Windows网络「SSL错误问题」及解决方案

文章目录 问题方案 问题 当我们使用了神秘力量加持网络后&#xff0c;可能会和国内的镜像源网站的之间发生冲突&#xff0c;典型的有 Python 从网络中安装包&#xff0c;如执行 pip install pingouin 时&#xff0c;受网络影响导致无法完成安装的情况&#xff1a; pip config…

【小沐学GIS】电子海图OpenCPN源代码编译和运行(VS2017 + Win10)

1、简介 免费的开源海图仪和船用GPS导航软件 https://opencpn.org/ 1.1 OpenCPN概述 OpenCPN是一款自由软件&#xff08;GPLv2&#xff09;&#xff0c;用于创建简洁的海图绘图仪和导航软件&#xff0c;可以在航行过程中使用或者作为计划工具。OpenCPN提供大量免费海图下载&a…

一文总结MySQL的指令是如何工作的

当你输入一条MySQL指令时候有没有想过会发生什么&#xff1f; 建立连接 首先你得先连到数据库上才行&#xff0c;这又分为长连接和短链接&#xff0c;短链接就是你查询一次就断开连接&#xff0c;长连接是你可以多次查询直到主动断开连接&#xff08;也可能被杀死进程&#x…

飞鼠异地组网工具实战之访问k8s集群内部服务

飞鼠异地组网工具实战之访问k8s集群内部服务 一、飞鼠异地组网工具介绍1.1 飞鼠工具简介1.2 飞鼠工具官网 二、本次实践介绍2.1 本次实践场景描述2.2 本次实践前提2.3 本次实践环境规划 三、检查本地k8s集群环境3.1 检查k8s各节点状态3.2 检查k8s版本3.3 检查k8s系统pod状态 四…