hive sql 行列转换 开窗函数 炸裂函数

news2025/1/13 13:27:31

hive sql 行列转换 开窗函数 炸裂函数

准备原始数据集

学生表 student.csv
讲师表 teacher.csv
课程表 course.csv
分数表 score.csv
员工表 emp.csv
雇员表 employee.csv
电影表 movie.txt

学生表 student.csv

001,彭于晏,1995-05-16,男
002,胡歌,1994-03-20,男
003,周杰伦,1995-04-30,男
004,刘德华,1998-08-28,男
005,唐国强,1993-09-10,男
006,陈道明,1992-11-12,男
007,陈坤,1999-04-09,男
008,吴京,1994-02-06,男
009,郭德纲,1992-12-05,男
010,于谦,1998-08-23,男
011,潘长江,1995-05-27,男
012,杨紫,1996-12-21,女
013,蒋欣,1997-11-08,女
014,赵丽颖,1990-01-09,女
015,刘亦菲,1993-01-14,女
016,周冬雨,1990-06-18,女
017,范冰冰,1992-07-04,女
018,李冰冰,1993-09-24,女
019,邓紫棋,1994-08-31,女
020,宋丹丹,1991-03-01,女

讲师表 teacher.csv

1001,张高数
1002,李体音
1003,王子文
1004,刘丽英

课程表 course.csv

01,语文,1003
02,数学,1001
03,英语,1004
04,体育,1002
05,音乐,1002

分数表 score.csv

001,01,94
002,01,74
004,01,85
005,01,64
006,01,71
007,01,48
008,01,56
009,01,75
010,01,84
011,01,61
012,01,44
013,01,47
014,01,81
015,01,90
016,01,71
017,01,58
018,01,38
019,01,46
020,01,89
001,02,63
002,02,84
004,02,93
005,02,44
006,02,90
007,02,55
008,02,34
009,02,78
010,02,68
011,02,49
012,02,74
013,02,35
014,02,39
015,02,48
016,02,89
017,02,34
018,02,58
019,02,39
020,02,59
001,03,79
002,03,87
004,03,89
005,03,99
006,03,59
007,03,70
008,03,39
009,03,60
010,03,47
011,03,70
012,03,62
013,03,93
014,03,32
015,03,84
016,03,71
017,03,55
018,03,49
019,03,93
020,03,81
001,04,54
002,04,100
004,04,59
005,04,85
007,04,63
009,04,79
010,04,34
013,04,69
014,04,40
016,04,94
017,04,34
020,04,50
005,05,85
007,05,63
009,05,79
015,05,59
018,05,87

员工表 emp.csv

7369,张三,研发,800.00,30
7499,李四,财务,1600.00,20
7521,王五,行政,1250.00,10
7566,赵六,销售,2975.00,40
7654,侯七,研发,1250.00,30
7698,马八,研发,2850.00,30
7782,金九,行政,2450.0,30
7788,银十,行政,3000.00,10
7839,小芳,销售,5000.00,40
7844,小明,销售,1500.00,40
7876,小李,行政,1100.00,10
7900,小元,讲师,950.00,30
7902,小海,行政,3000.00,10
7934,小红明,讲师,1300.00,30
7934,小红,讲师,1300.00,

雇员表 employee.csv

张无忌,男,1980/02/12,2022/08/09,销售,3000,12000,阿朱_小昭,张小无:8_张小忌:9
赵敏,女,1982/05/18,2022/09/10,行政,9000,2000,阿三_阿四,赵小敏:8
宋青书,男,1981/03/15,2022/04/09,研发,18000,1000,王五_赵六,宋小青:7_宋小书:5
周芷若,女,1981/03/17,2022/04/10,研发,18000,1000,王五_赵六,宋小青:7_宋小书:5
郭靖,男,1985/03/11,2022/07/19,销售,2000,13000,南帝_北丐,郭芙,5_郭襄:4
黄蓉,女,1982/12/13,2022/06/11,行政,12000,null,东邪_西毒,郭芙,5_郭襄:4
杨过,男,1988/01/30,2022/08/13,前台,5000,null,郭靖_黄蓉,杨小过:2
小龙女,女,1985/02/12,2022/09/24,前台,6000,null,张三_李四,杨小过:2

电影表 movie.txt

《疑犯追踪》-悬疑,动作,科幻,剧情
《Lie to me》-悬疑,警匪,动作,心理,剧情
《战狼2》-战争,动作,灾难

订单表 order.csv

1,1001,小元,2022-01-01,10
2,1002,小海,2022-01-02,15
3,1001,小元,2022-02-03,23
4,1002,小海,2022-01-04,29
5,1001,小元,2022-01-05,46
6,1001,小元,2022-04-06,42
7,1002,小海,2022-01-07,50
8,1001,小元,2022-01-08,50
9,1003,小辉,2022-04-08,62
10,1003,小辉,2022-04-09,62
11,1004,小猛,2022-05-10,12
12,1003,小辉,2022-04-11,75
13,1004,小猛,2022-06-12,80
14,1003,小辉,2022-04-13,94

创建数据库和数据表

create database chap06;
use chap06;
-- 学生表 student.csv
create external table student (
	stu_id string comment '学生ID',
	stu_name string comment '学生姓名',
    birthday string comment '出生日期',
    gender string comment '学生性别'
)
 row format delimited fields terminated by ','
 lines terminated by '\n'
 stored as textfile
 location '/quiz03/student';

load data local inpath '/root/data/data02/student.csv' overwrite into table student;

select * from student;

-- 讲师表 teacher.csv
create external table teacher (
	tea_id string comment '课程ID',
	tea_name string comment '课程名称'
)
 row format delimited fields terminated by ','
 lines terminated by '\n'
 stored as textfile
 location '/quiz03/teacher';

load data local inpath '/root/data/data02/teacher.csv' overwrite into table teacher;

select * from teacher;

-- 课程表 course.csv
create external table course (
	course_id string comment '课程ID',
	course_name string comment '课程名称',
    tea_id string comment '讲师ID'
)
 row format delimited fields terminated by ','
 lines terminated by '\n'
 stored as textfile
 location '/quiz03/course';

load data local inpath '/root/data/data02/course.csv' overwrite into table course;

select * from course;

-- 分数表 score.csv
create external table score (
	stu_id string comment '学生ID',
	course_id string comment '课程ID',
    score int comment '成绩'
)
 row format delimited fields terminated by ','
 lines terminated by '\n'
 stored as textfile
 location '/quiz03/score';

load data local inpath '/root/data/data02/score.csv' overwrite into table score;
select * from score;

-- 员工表 emp.csv
create external table emp (
	emp_id int comment '员工ID',
	emp_name string comment '员工姓名',
    emp_job string comment '员工岗位',
    emp_salary decimal(8,2) comment '员工薪资',
    dept_id int comment '员工隶属部门ID'
)
 row format delimited fields terminated by ','
 lines terminated by '\n'
 stored as textfile
 location '/quiz01/emp';
load data local inpath '/root/data/data02/emp.csv' overwrite into table emp;
select * from emp;

-- 雇员表 employee.csv
create external table employee(
    name string comment '姓名',
    sex  string comment '性别',
    birthday string comment '出生年月',
    hiredate string comment '入职日期',
    job string comment '岗位',
    salary int comment '薪资',
    bonus int comment '奖金',
    friends array<string> comment '朋友',
    children map<string,int> comment '孩子'
)
 row format delimited fields terminated by ','
 collection items terminated by '_'
 map keys terminated by ':'
 lines terminated by '\n'
 stored as textfile
 location '/quiz04/employee';
load data local inpath '/root/data/data02/employee.csv' into table employee;
select * from employee;

-- 电影表 movie.txt
create external table movie(
    name string comment '电影名称',
    category string comment '电影分类'
)
 row format delimited fields terminated by '-'
 lines terminated by '\n'
 stored as textfile
 location '/quiz04/movie';
load data local inpath '/root/data/data02/movie.txt' into table movie;
select * from movie;

-- 订单表 order.csv
create external table `order`
(
    order_id     string comment '订单id',
    user_id      string comment '用户id',
    user_name    string comment '用户姓名',
    order_date   string comment '下单日期',
    order_amount int comment '订单金额'
)
 row format delimited fields terminated by ','
 lines terminated by '\n'
 stored as textfile
 location '/quiz04/order';
load data local inpath '/root/data/data02/order.csv' into table `order`;
select * from `order`;

行列转换

列转行

create table test (
    stu_name string,
    course_name string,
    score int
);
insert into test values ('张三','语文','80'),('张三','数学','90'), ('李四','语文','85'),('李四','数学','95');
select * from test;
select stu_name,
       max(case when course_name = '语文' then score end) as yuwen,
       max(case when course_name = '数学' then score end) as shuxue
       from test group by stu_name;

行列转行 列转行

-- 多个值转为集合 collect_list 不会去重
select collect_list(emp_job) job_list from emp;
-- 多个值转为集合 collect_set 会去重
select collect_set(emp_job) job_set from emp;
-- size 获取结合中元素的数量
select size(collect_set(emp_job)) job_count from emp;
-- concat_ws 将多个数据 以分隔符形式 拼接 concat_ws(分隔符,数据1,数据2,...)
select concat_ws('-',collect_set(emp_job)) job_string from emp;
-- split 字符串切分 以分隔符切分字符串 为集合
select split(concat_ws('-',collect_set(emp_job)),'-') job_item from emp;

行专列

create table sales (
    emp_name string,
    january int,
    february int,
    march int
);
insert into sales values ('张三',1000,2000,3000),('李四',1500,2500,3500);
select * from sales;

行列转换 行转列

将转换后的结果还原

select t1.emp_name,
    sale_list[0] january,
    sale_list[1] february,
    sale_list[2] march
    from(
        select t.emp_name,collect_list(sale) sale_list from(
            select emp_name,'january' yue, january sale from sales
            union all
            select emp_name,'february' yue,february sale from sales
            union all
            select emp_name,'march' yue,march sale from sales) t
            group by t.emp_name) t1;

UDF UDTF UDAF

UDF,即用户定义函数(user-defined function),作用于单行数据,并且产生一个数据行作为输出。
Hive中大多数函数都属于这一类,比如数学函数和字符串函数。UDF函数的输入与输出值是1:1关系。

UDTF,即用户定义表生成函数(user-defined table-generating function),
作用于单行数据,并且产生多个数据行。UDTF函数的输入与输出值是1:n的关系。

UDAF,用户定义聚集函数(user-defined aggregate function),作用于多行数据,产生一个输出数据行。
Hive中像COUNT、MAX、MIN和SUM这样的函数就是聚集函数。UDAF函数的输入与输出值是n:1的关系。

explode

array

select explode(array('java','python','scala','go')) as course;

map

select explode(map('name','李昊哲','gender','1')) as (key,value);

posexplode

select posexplode(array('java','python','scala','go')) as (pos,course);

inline

select inline(array(named_struct('id',1,'name','李昊哲','gender','1'),
                named_struct('id',2,'name','李哲','gender','0'),
                named_struct('id',3,'name','李大宝','gender','1')))
    as (id,name,gender);

lateral view

select * from employee lateral view explode(friends) t as friend;
select * from employee lateral view explode(children) t as children_name,children_age;
select * from employee
    lateral view explode(friends) t1 as friend
    lateral view explode(children) t2 as children_name,children_age;
select name, sex, birthday, hiredate, job, salary, bonus, friend,children_name,children_age  from employee e
    lateral view explode(friends) t1 as friend
    lateral view explode(children) t2 as children_name,children_age;

UDTF 案例

根据电影信息表,统计各分类的电影数量

select cate,count(name) as quantity  from movie
    lateral view explode(split(category,',')) tmp as cate
    group by cate;

窗口函数(开窗函数)

能为每行数据划分一个窗口,然后对窗口范围内的数据进行计算,最后将计算结果返回给该行
Function(arg1,…, argn) OVER ([PARTITION BY <…>] [ORDER BY <…>] [<window_expression>])
其中Function(arg1,…, argn) 可以是下面分类中的任意一个
聚合函数:比如sum max min avg count等
分析函数:比如lead lag first_value last_value等
排序函数:比如row_number rank dense_rank等
OVER [PARTITION BY <…>] 类似于group by 用于指定分组 每个分组你可以把它叫做窗口
如果没有PARTITION BY 那么整张表的所有行就是一组
[ORDER BY <…>] 用于指定每个分组内的数据排序规则 支持ASC、DESC
[<window_expression>] 用于指定每个窗口中 操作的数据范围 默认是窗口中所有行

聚合函数

聚合函数
rows 基于行
range 基于值
函数() over(rows between and 3)

  • unbounded preceding 表示从前面的起点
  • number preceding 往前
  • current row 当前行
  • number following 往后
  • unbounded following 表示到后面的终点

统计每个用户截至每次下单的累计下单总额

select *,
       sum(order_amount) over (
           partition by user_id ,substr(order_date,1,7)
           order by order_date
           rows between unbounded preceding and current row
           ) sum_order_amount
       from `order`;
select *,
       sum(order_amount) over (
           partition by user_id ,substr(order_date,1,7)
           order by order_date
           rows unbounded preceding
           ) sum_order_amount
       from `order`;

统计每个用户截至每次下单的当月累积下单总额

select *,
       sum(order_amount) over (
           partition by user_id ,substr(order_date,1,7)
           order by order_date
           rows between unbounded preceding and unbounded following
           ) sum_order_amount
       from `order`;

最近三笔订单总金额

  • 当前订单金额与前两笔订单金额的总和
  • 当前订单金额与后两笔订单金额的总和
  • 当前订单金额与前一笔订单和后一笔订单金额的总和
当前订单金额与前两笔订单金额的总和
select *,
       sum(order_amount) over (
           partition by user_id
           order by order_date
           rows 2 preceding
           ) sum_order_amount
       from `order`;
当前订单金额与后两笔订单金额的总和
select *,
       sum(order_amount) over (
           partition by user_id
           order by order_date
           rows 2 following
           ) sum_order_amount
       from `order`;
当前订单金额与前一笔订单和后一笔订单金额的总和
select *,
       sum(order_amount) over (
           partition by user_id
           order by order_date
           rows between 1 preceding and 1 following
           ) sum_order_amount
       from `order`;

分析函数 lag lead first_value last_value

lag lead

lag() over() 与 lead() over() 函数是跟偏移量相关的两个分析函数,
通过这两个函数可以在一次查询中取出同一字段的前 N 行的数据 (lag) 和后 N 行的数据 (lead) 作为独立的列,
从而更方便地进行进行数据过滤。这种操作可以代替表的自联接,并且 LAG 和 LEAD 有更高的效率。
over() 表示 lag() 与 lead() 操作的数据都在 over() 的范围内,可以使用 partition by 语句(用于分组) order by 语句(用于排序)。
partition by a order by b 表示以 a 字段进行分组,再 以 b 字段进行排序,对数据进行查询。
例如:lag(field, num, defaultvalue) field 需要查找的字段,num 往前查找的 num 行的数据,defaultvalue 没有符合条件的默认值
例如:lead(field, num, defaultvalue) field 需要查找的字段,num 往后查找的 num 行的数据,defaultvalue 没有符合条件的默认值

统计每个用户每次下单距离上次下单相隔的天数(首次下单按0天算)
select order_id, user_id, user_name, order_date, order_amount from (
    select order_id, user_id, user_name, order_date, order_amount,
       lag(order_date,1,order_date) over (partition by user_id order by order_date) pre_order_date
       from `order`) t where datediff(order_date,pre_order_date) = 0;
每个用户每个月首笔订单时间
select order_id, user_id, user_name, order_date, order_amount from (
    select order_id, user_id, user_name, order_date, order_amount,
       lag(order_date,1,order_date) over (partition by user_id,substr(order_date,1,7) order by order_date) pre_order_date
       from `order`) t where datediff(order_date,pre_order_date) = 0;
每个用户每个月最后笔订单时间
select order_id, user_id, user_name, order_date, order_amount from (
    select order_id, user_id, user_name, order_date, order_amount,
       lead(order_date,1,order_date) over (partition by user_id,substr(order_date,1,7) order by order_date) next_order_date
       from `order`) t where datediff(order_date,next_order_date) = 0;
每个岗位先先入职的远哥和后入在的员工工资差
select name, sex, birthday, hiredate, job, salary, bonus, friends, children, new_salary,(salary - new_salary) salary_diff from (
    select name, sex, birthday, hiredate, job, salary, bonus, friends, children,
       lead(salary,1,salary) over (partition by job order by hiredate) new_salary
       from employee) t;

first_value last_value

first_value 取每个分区内某列的第一个值
语法:first_value(col,true/false) over (partition by col1 order by col2)
第二个参数为true,跳过空值(默认为false)

last_value 取每个分区内某列的最后一个值
语法:last_value(col,true/false) over (partition by col1 order by col2)
第二个参数为true,跳过空值(默认为false)

每个用户每个月首笔订单时间
select order_id, user_id, user_name, order_date, order_amount,
       first_value(order_date) over (partition by user_id,substr(order_date,1,7) order by order_date) first_order_value
       from `order`;
每个用户每个月最后笔订单时间
select order_id, user_id, user_name, order_date, order_amount,
       last_value(order_date) over (
           partition by user_id,substr(order_date,1,7) order by order_date
           rows between current row and unbounded following) last_order_value
       from `order`;
每个用户每个月首笔订单时间和最后笔订单时间
select order_id, user_id, user_name, order_date, order_amount,
        first_value(order_date) over (partition by user_id,substr(order_date,1,7) order by order_date) first_order_value,
        last_value(order_date) over (
           partition by user_id,substr(order_date,1,7) order by order_date
           rows between current row and unbounded following) last_order_value
       from `order`;
select order_id, user_id, user_name, order_date, order_amount, first_order_value, last_order_value from
    (select order_id, user_id, user_name, order_date, order_amount,
            first_value(order_date) over (partition by user_id,substr(order_date,1,7) order by order_date) first_order_value,
            last_value(order_date) over (
               partition by user_id,substr(order_date,1,7) order by order_date
               rows between current row and unbounded following) last_order_value
           from `order`) t where order_date = first_order_value or order_date = last_order_value;

排序函数

分组排序取TopN

查询各科成绩前五名的学生

select a.course_id,a.stu_id,a.score from score a
    left join score b
    on a.course_id = b.course_id and a.score <= b.score
    group by a.stu_id,a.course_id,a.score
    having count(a.stu_id) <=5
    order by a.course_id,a.score desc;
select S1.course_id,s1.stu_id,s1.score from score s1 where
    (select count(*) from score s2
        where s2.course_id=s1.course_id AND s2.score > s1.score
        ) <= 5 order by s1.course_id,s1.score desc;
row_number

row_number() over () 连续序号
over()里头的分组以及排序的执行晚于 where 、group by、order by 的执行。

select * from
    (select course_id, stu_id,  score,
        row_number() over (partition by course_id order by score desc ) as mum
        from score) t where mum <= 5;
rank

rank() over () 排名 跳跃排序 序号不是连续的

select * from
    (select course_id, stu_id,  score,
        rank() over (partition by course_id order by score desc ) as mum
        from score) t where mum <= 5;
dense_rank

dense_rank() over () 排名 连续排序

select * from
    (select course_id, stu_id,  score,
        dense_rank() over (partition by course_id order by score desc ) as mum
        from score) t where mum <= 5;
每个月每个消费总金额前三名的用户
select order_id, user_id, user_name, order_date, order_amount, total_order_amount, rank_total_order_amount from
(select order_id, user_id, user_name, order_date, order_amount, total_order_amount,
    dense_rank() over (partition by substr(order_date,1,7) order by total_order_amount desc) rank_total_order_amount
    from (
        select order_id, user_id, user_name, order_date, order_amount,
           sum(order_amount) over(partition by substr(order_date,1,7),user_id order by order_date
               rows between unbounded preceding and unbounded following) total_order_amount
           from `order`) t) t1 where rank_total_order_amount <= 3;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1225928.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

037、目标检测-算法速览

之——常用算法速览 目录 之——常用算法速览 杂谈 正文 1.区域卷积神经网络 - R-CNN 2.单发多框检测SSD&#xff0c;single shot detection 3.yolo 杂谈 快速过一下目标检测的各类算法。 正文 1.区域卷积神经网络 - R-CNN region_based CNN&#xff0c;奠基性的工作。…

【AI】行业消息精选和分析(23-11-19)

行业动态 1、对标GPTs&#xff0c;微软连夜发布100多项更新&#xff01;微软CEO&#xff1a;Copilot时代来了 2、英伟达联手微软推出AI代工服务 3、全新雅虎搜索将于 2024 年上线&#xff0c;未来还会推出更多 AI 和高级功能 4、Instagram 推出定制 AI 贴纸和滤镜功能&#xff…

【教3妹学编程-算法题】三个无重叠子数组的最大和

2哥 : 3妹&#xff0c;咋啦&#xff1f;一副苦大仇深的样子&#xff1f; 3妹&#xff1a;不开心呀不开心&#xff0c;羽生结弦宣布离婚。 2哥 : 羽生什么&#xff1f; 3妹&#xff1a;羽生结弦&#xff01; 2哥 : 什么结弦&#xff1f; 3妹&#xff1a;羽生结弦&#xff01;&am…

战神传奇【我本沉默精修版】win服务端+双端+充值后台+架设教程

搭建资源下载:战神传奇【我本沉默精修版】win服务端双端充值后台架设教程-海盗空间

安卓手机投屏到电视,跨品牌、跨地域同样可以实现!

在手机网页上看到的视频&#xff0c;也可以投屏到电视上看&#xff01; 长时间使用手机&#xff0c;难免脖子会酸。这时候&#xff0c;如果你将手机屏幕投屏到大电视屏幕&#xff0c;可以减缓脖子的压力&#xff0c;而且大屏的视觉体验更爽。 假设你有一台安卓手机&#xff0c;…

TG Pro v2.87(mac温度风扇速度控制工具)

TG Pro 是适用于 macOS 的温度和风扇速度控制工具&#xff0c;可让您监控 Mac 组件&#xff08;例如 CPU 和 GPU&#xff09;的温度和风扇速度。如果您担心 Mac 过热或想要手动调整风扇速度以降低噪音水平&#xff0c;这将特别有用。 除了温度和风扇监控&#xff0c;TG Pro 还…

解锁数据安全之门:探秘迅软DSE的文件权限控制功能

企业管理者在进行数据安全管控时通常只关注到文件的加密方式&#xff0c;却忽略了以下问题&#xff1a;对于企业内部文档&#xff0c;根据其所承载的涉密程度不同&#xff0c;重要程度也不相同&#xff0c;需要由不同涉密等级的的人员进行处理&#xff0c;这就需要对涉密文档和…

JVM 调优指南

文章目录 为什么要学 JVM一、JVM 整体布局二、Class 文件规范三、类加载模块四、执行引擎五、GC 垃圾回收1 、JVM内存布局2 、 JVM 有哪些主要的垃圾回收器&#xff1f;3 、分代垃圾回收工作机制 六、对 JVM 进行调优的基础思路七、 GC 情况分析实例 JVM调优指南 -- 楼兰 ​ JV…

参考文献格式

目录 期刊会议预印本&#xff08;如arxiv&#xff09; 期刊 找不到页码可以在文献中查看bibtex格式&#xff0c;其中有 外文期刊可在web of science中查找卷号、期号和所在页数&#xff1a; [1] ZHANG F, HU Z Q, FU Y K, et al. A New Identification Method for Surface …

详解Java设计模式之职责链模式

原文&#xff1a;详解Java设计模式之职责链模式_java_脚本之家 责任链模式是一种行为设计模式&#xff0c;使多个对象都有机会处理请求&#xff0c;从而避免请求的发送者和接收者之间的耦合关系&#xff0c;文中通过代码示例给大家介绍的非常详细,需要的朋友可以参考下 − 目…

传奇手游白日门【龙城霸业】win服务端+双端+GM后台+详细教程

搭建资源下载地址&#xff1a;传奇手游白日门【龙城霸业】win服务端双端GM后台详细教程-海盗空间

6.9平衡二叉树(LC110-E)

绝对值函数&#xff1a;abs() 算法&#xff1a; 高度和深度的区别&#xff1a; 节点的高度&#xff1a;节点到叶子节点的距离&#xff08;从下往上&#xff09; 节点的深度&#xff1a;节点到根节点的距离&#xff08;从上往下&#xff09; 逻辑&#xff1a;一个平衡二叉树…

Bert学习笔记(简单入门版)

目 录 一、基础架构 二、输入部分 三、预训练&#xff1a;MLMNSP 3.1 MLM&#xff1a;掩码语言模型 3.1.1 mask模型缺点 3.1.2 mask的概率问题 3.1.3 mask代码实践 3.2 NSP 四、如何微调Bert 五、如何提升BERT下游任务表现 5.1 一般做法 5.2 如何在相同领域数据中进…

C_11微机原理

一、单项选择题&#xff08;本大题共 15 小题&#xff0c;每小题 3分&#xff0c;共45分。在每小题给出的四个备选项中&#xff0c;选出一个正确的答案。&#xff09; .EXE 文件产生在&#xff08;&#xff09;之后。 A.汇编 B. 编辑 C.用软件转换 D.连接 2,十进制-61的8位二进…

Dynamsoft Barcode Reader新框架将医疗视觉提升到新水平

Dynamsoft Vision 框架将医疗保健领域的计算机视觉提升到新的水平 引入图像捕获、内容理解、结果解析和交互式工作流程的聚合 SDK&#xff0c;以简化复杂的流程。 温哥华 – 2023 年 7 月 17 日 – Dynamsoft™ 发布了 Dynamsoft Barcode Reader SDK C Edition v10.0.0。更新…

Redis篇---第七篇

系列文章目录 文章目录 系列文章目录前言一、是否使用过 Redis Cluster 集群,集群的原理是什么?二、 Redis Cluster 集群方案什么情况下会导致整个集群不可用?三、Redis 集群架构模式有哪几种?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分…

【算法挨揍日记】day31——673. 最长递增子序列的个数、646. 最长数对链

673. 最长递增子序列的个数 673. 最长递增子序列的个数 题目解析&#xff1a; 给定一个未排序的整数数组 nums &#xff0c; 返回最长递增子序列的个数 。 注意 这个数列必须是 严格 递增的。 解题思路&#xff1a; 算法思路&#xff1a; 1. 状态表⽰&#xff1a; 先尝试…

后端技术知识点内容-全部内容-面试宝典-后端面试知识点

文章目录 -2 flink-1 linux of viewlinux查看占用cup最高的10个进程的命令&#xff1b; 〇、分布式锁 & 分布式事务0-1分布式锁--包含CAP理论模型概述分布式锁&#xff1a;分布式锁应该具备哪些条件&#xff1a;分布式锁的业务场景&#xff1a; 分布式锁的实现方式有&#…

【linux】补充:高效处理文本的命令学习(tr、uniq、sort、cut)

目录 一、tr——转换、压缩、删除 1、tr -s “分隔符” &#xff08;指定压缩连续的内容&#xff09; 2、tr -d 想要删除的东西 ​编辑 3、tr -t 内容1 内容2 将内容1全部转换为内容2&#xff08;字符数需要一一对应&#xff09; 二、cut——快速剪裁命令 三、uniq——去…

【算法挨揍日记】day30——300. 最长递增子序列、376. 摆动序列

300. 最长递增子序列 300. 最长递增子序列 题目解析&#xff1a; 给你一个整数数组 nums &#xff0c;找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列&#xff0c;删除&#xff08;或不删除&#xff09;数组中的元素而不改变其余元素的顺序。例如&#…