基于供需算法优化概率神经网络PNN的分类预测 - 附代码

news2024/11/24 1:17:54

基于供需算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于供需算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于供需优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用供需算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于供需优化的PNN网络

供需算法原理请参考:https://blog.csdn.net/u011835903/article/details/118800934

利用供需算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

供需参数设置如下:

%% 供需参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,供需-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1223490.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

redis实战篇03

附近的商户 我们利用Redis的GEOHash来完成对于地理坐标的操作 UV统计 主要是使用Redis来完成统计功能 用户签到 使用Redis的BitMap数据统计功能 好友关注 基于Set集合的关注、取消关注,共同关注等等功能,这一块知识咱们之前就讲过,这次…

数据库迁移(DBeaver版本)

最近需要做一个数据库迁移, 测试环境开发的差不多了,需要将脚本迁移到生产。 中间了试了一些工具,比如Jetbrain出品的datagrip,这个数据库工具平时还是很好用的,但是数据迁移感觉不是那么好用,所以还是用到…

string类的总结

目录 1.为什么要学习string类 2.string的标准库 3.string类的常用接口说明 1.string类对象的常见构造 2.string类对象的容量操作 3.string类对象的3种遍历方法 3.1 [ ] 下标 3.2 基于范围的for循环 3.3 迭代器 4 string类对象的元素访问 4.1 operator[]: 4.…

ubuntu20.04.1网络图标突然消失,无法上网

故障:打开虚拟机进入Ubuntu系统后,打开火狐浏览器,发现无法连接网络。 解决办法:因为刚接触Linux系统,就在网上找各种资料,试了各种办法无果,最后发现有可能网络配置文件被更改。 打开控制台输…

深信服AC设备用户认证

拓扑图 目录 拓扑图 一. 无需认证 思路:创建用户和组,将无需认证策略和用户绑定 1.创建组,组里添加用户 2. 新建不需要认证策略,将不需要认证策略和用户关联 3.验证 二.密码认证 思路:创建用户和组,并…

windows快捷方式图标变成空白

今天突然有客户说应用程序快捷方式图标变成了空白,就研究了一下,网上找了一下很多都说是什么图标缓存有问题,试过之后发现并不能解决问题。 然后发现用户的文件上都一把黄色的小锁的标志,查了一下说是文件属性里面设置加密之后就会…

深度学习二维码识别 计算机竞赛

文章目录 0 前言2 二维码基础概念2.1 二维码介绍2.2 QRCode2.3 QRCode 特点 3 机器视觉二维码识别技术3.1 二维码的识别流程3.2 二维码定位3.3 常用的扫描方法 4 深度学习二维码识别4.1 部分关键代码 5 测试结果6 最后 0 前言 🔥 优质竞赛项目系列,今天…

Java(一)(引用类型的参数在传递,方法重载,面向对象编程基础)

基本类型和引用类型的参数在传递的时候有什么不同? 基本类型的值传递:参数传输存储的数据值 引用类型的值传递:参数传输存储的地址值 传递数组名字的时候,传递的是数组的地址,change方法可以通过地址直接访问我们在堆内存中开辟的数组,然后改变数组,数组中的元素发生变化 方…

HP惠普光影精灵7笔记本Victus by HP 16.1英寸游戏本16-d0000原装出厂Windows11.21H2预装OEM系统

下载链接:https://pan.baidu.com/s/1LGNeQR1AF1XBJb5kfZca5w?pwdhwk6 提取码:hwk6 可适用的型号: 16-d0111tx,16-d0112tx,16-d0125tx,16-d0127tx,16-d0128tx,16-d0129tx&#…

“升级图片管理,优化工作流程——轻松将JPG转为PNG“

在图片时代,无论是工作还是生活,图片管理都显得尤为重要。批量处理图片,将JPG格式轻松转换为PNG格式,能够使您的图片管理更优化,提高工作效率。 首先,我们进入首助编辑高手主页面,会看到有多种…

键盘方向键移动当前选中的table单元格,并可以输入内容

有类似于这样的表格&#xff0c;用的<table>标签。原本要在单元格的文本框里面输入内容&#xff0c;需要用鼠标一个一个去点以获取焦点&#xff0c;现在需要不用鼠标选中&#xff0c;直接用键盘的上下左右来移动当前正在输入的单元格文本框。 const currentCell React.u…

简单算法——回溯、贪心、动态规划

回溯法 回溯法深度优先剪枝&#xff0c;实质就是用递归代替for循环。 仍然是一种暴力遍历的手段&#xff0c;通常与递归配合使用&#xff0c;用于解决单纯for循环无法处理的问题&#xff0c;比如组合、切割、子集、排列等问题——比如求n个数里的长度为k的组合&#xff0c;需要…

docker 安装mongodb 实现 数据,日志,配置文件外挂

docker 安装mongodb 实现数据&#xff0c;日志&#xff0c;配置文件外挂 1 背景 最近开发了一个评论系统之前用mysql来存储数据&#xff0c;但是考虑到后期业务增大访问量也会增大&#xff0c;为了兼容这种高并发的场景&#xff0c;因此经过多方面的考虑&#xff0c;我们最终…

调试/抓包工具

一、Fiddler【推荐window使用】 介绍&#xff1a;个人认为是 Windows 平台最好用的抓包工具&#xff1b; 下载&#xff1a;Fiddler | Web Debugging Proxy and Troubleshooting Solutions 使用方式&#xff1a;这一篇文章写的很全&#xff0c;认真看完就够用了 Fiddler 抓包工…

FISCO BCOS 3.0【02】配置和使用系统自带的控制台

官方技术文档&#xff1a;https://fisco-bcos-doc.readthedocs.io/zh-cn/latest/index.html 我们在官方技术文档的基础上&#xff0c;进行&#xff0c;对文档中一些不清楚的地方进行修正 控制台提供了向FISCO BCOS节点部署合约、发起合约调用、查询链状态等功能。 第一步. 安…

Linux本地docker一键部署traefik+内网穿透工具实现远程访问Web UI管理界面

文章目录 前言1. Docker 部署 Trfɪk2. 本地访问traefik测试3. Linux 安装cpolar4. 配置Traefik公网访问地址5. 公网远程访问Traefik6. 固定Traefik公网地址 前言 Trfɪk 是一个云原生的新型的 HTTP 反向代理、负载均衡软件&#xff0c;能轻易的部署微服务。它支持多种后端 (D…

Git详解及 github使用

1.1 关于版本控制 开始之前先看一个没有版本控制的例子 1.1.1 本地版本控制 本地版本控制系统 许多人习惯用复制整个项目目录的方式来保存不同的版本&#xff0c;或许还会改名加上备份时间以示区别。这么做唯一的 好处就是简单&#xff0c;但是特别容易犯错。有时候会混淆所在…

市级奖项+1,持安获「创业北京」创业创新大赛优秀奖!

2274个创业项目参赛 历经五个多月的激烈角逐 第六届“创业北京”创业创新大赛 终于圆满落下帷幕 持安科技在北京市总决赛中再创佳绩&#xff01; 荣获制造业赛道优秀奖 本次大赛由北京市人力资源和社会保障局、北京市发展和改革委员会等11家单位联合主办&#xff0c;以“创…

C语言--从键盘输入10个数字放在数组中,并输出

用scanf读取数字的时候要注意&#xff0c;可以输入一个数字&#xff0c;按一下回车&#xff0c;输入一个数字&#xff0c;按一下回车&#xff0c;也可以一次性输入完10个数据。&#xff08;中间可以用空格隔开&#xff0c;系统会自动识别&#xff09; 输出一:每按下一个数字&am…

数据库mysql详细教学

1024 byte 构成 1 kb 1024 KB > 1MB 1024 MB > 1GB 1024 GB > 1TB 1024 TB > 1PB 内存的数据&#xff0c;断电后会丢失。外存的数据&#xff0c;断电后数据还在~ “持久化” 这样的次&#xff0c;意思就是把数据写到硬盘上。 mysql的第一组基本操作&#xff1a;数…