基于JAYA算法优化概率神经网络PNN的分类预测 - 附代码

news2024/12/27 4:44:51

基于JAYA算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于JAYA算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于JAYA优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用JAYA算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于JAYA优化的PNN网络

JAYA算法原理请参考:https://blog.csdn.net/u011835903/article/details/115572600

利用JAYA算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

JAYA参数设置如下:

%% JAYA参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,JAYA-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1223240.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深度学习乳腺癌分类 计算机竞赛

文章目录 1 前言2 前言3 数据集3.1 良性样本3.2 病变样本 4 开发环境5 代码实现5.1 实现流程5.2 部分代码实现5.2.1 导入库5.2.2 图像加载5.2.3 标记5.2.4 分组5.2.5 构建模型训练 6 分析指标6.1 精度,召回率和F1度量6.2 混淆矩阵 7 结果和结论8 最后 1 前言 &…

嵌入式中一篇搞定Cmake使用教程

今天分享一篇关于 cmake 的相关文章,通过这个工具可以生成本地的Makefile。让我们不用去编写复杂的Makefile。 引言 CMake是开源、跨平台的构建工具,可以让我们通过编写简单的配置文件去生成本地的Makefile,这个配置文件是独立于运行平台和…

数学才是顶级码农的核心修养,码农怎样搞好数学?来看看这些网友强推的数学神作!文末评论区进行评论参与送书哟

文章目录 导读 一:基础篇 1:优美的数学思维:问题求解与证明 2:数学分析 3:线性代数 4:线性代数及其应用 5:代数 二:进阶篇 1:初等数论及其应用 2:数…

【Linux网络】从原理到实操,感受PXE无人值守自动化高效批量网络安装系统

一、PXE网络批量装机的介绍 1、常见的三种系统安装方式 2、回顾系统安装的过程,了解系统安装的必要条件 3、什么是pxe 4、搭建pxe的原理 5、Linux的光盘镜像中的isolinux中的相关文件学习 二、关于实现PXE无人值守装机的四大文件与五个软件的对应关系详解 5个…

基于Python实现大型家用电器和电子产品在线商店购买数据分析【500010098】

导入模块 import pandas as pd import numpy as np import matplotlib.pyplot as plt获取数据 df pd.read_csv( r"./data/kz.csv",sep,)数据描述 该数据包含2020年4月至2020年11月从大型家用电器和电子产品在线商店购买的数据。 数据说明 event_time&#xff1a…

嵌入式中一文搞懂ARM处理器架构

1、嵌入式处理器基础 典型的微处理器由控制单元、程序计数器(PC)、指令寄存器(IR)、数据通道、存储器等组成 。 指令执行过程一般分为: 取指: 从存储器中获得下一条执行的指令读入指令寄存器;…

Redis篇---第六篇

系列文章目录 文章目录 系列文章目录前言一、Redis 为什么设计成单线程的?二、什么是 bigkey?会存在什么影响?三、熟悉哪些 Redis 集群模式?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,…

从0开始学习JavaScript--JavaScript 流程控制

JavaScript中的流程控制结构是编写结构化、可读性强的代码的关键。本文将深入研究JavaScript中的流程控制,包括条件语句、循环结构、跳转语句等,并通过丰富的示例代码来更全面地了解和运用这些概念。 条件语句 条件语句用于基于不同的条件执行不同的代…

基于PLC的污水厌氧处理控制系统(论文+源码)

1. 系统设计 污水厌氧由进水系统通过粗格栅和清污机进行初步排除大块杂质物体以及漂浮物等,到达除砂池中。在除砂池系统中细格栅进一步净化污水厌氧中的细小颗粒物体,将污水厌氧中的细小沙粒滤除后进入氧化沟反应池。在该氧化沟系统中进行生化处理&…

抖音直播间涨粉助手,其开发流程与需要的技术和代码分享

先来看实操成果,↑↑需要的同学可看我名字↖↖↖↖↖,或评论888无偿分享 一、直播间涨人气的15种方法 直播间的人气就像水池中的水,想要有源源不断的流量,就要想办法把水龙头的水流开到最大,也就是要增加直播间曝光率&…

使用maven命令打包依赖

1、maven仓库地址 阿里云地址:https://developer.aliyun.com/mvn/search 中央仓库地址:https://mvnrepository.com/ 2、下载方式 在地址栏中输入要搜索的依赖 选择需要的版本 (1)直接复制 (2)pom下载 …

如何使用Gitlab搭建属于自己的代码管理平台

大家好,我是Mandy。今天分享的主题内容是如何使用GitLab搭建属于自己的代码管理平台。 为什么会单独分享这篇文章呢,相信在很多的开发同学任职的公司中,都用到了gitlab来做代码管理平台,同时结合GitLab的一些自动化功能&#xff…

均匀光源积分球的应用领域有哪些

均匀光源积分球的主要作用是收集光线,并将其用作一个散射光源或用于测量。它可以将光线经过积分球内部的均匀分布后射出,因此积分球也可以当作一个光强衰减器。同时,积分球可以实现均匀的朗伯体漫散射光源输出,整个输出口表面的亮…

基于算术优化算法优化概率神经网络PNN的分类预测 - 附代码

基于算术优化算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于算术优化算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于算术优化优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

【踩坑笔记】国科GK7202V300芯片开发常见问题解决办法

国科Linux芯片开发常见问题&解决办法 0.读前须知 不管什么时候,下载程序还是啥,一定要检查路径!!!别问我为什么,呜呜呜~ tips:该芯片是仿造海思的产品,所以,有些不…

基于热交换算法优化概率神经网络PNN的分类预测 - 附代码

基于热交换算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于热交换算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于热交换优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神经网络…

git基本操作(配图超详细讲解)

个人主页:Lei宝啊 愿所有美好如期而遇 目录 创建git本地仓库 配置仓库 认识工作区,暂存区,版本库 修改文件 版本回退 撤销修改 删除文件 创建git本地仓库 要提前说的是,仓库是进⾏版本控制的⼀个⽂件⽬录。我们要想对⽂…

OpenCV C++ 图像处理实战 ——《OCR字符识别》

OpenCV C++ 图像处理实战 ——《OCR字符识别》 一、结果演示二、tesseract库配置2.1下载编译三、OCR字符识别3.1 文本检测方式3.1.1 RIL_BLOCK3.1.2 RIL_PARA3.1.3 RIL_TEXTLINE3.1.4 RIL_WORD3.1.5 RIL_SYMBOL3.2 英文文本检测3.3 中英文本检测四、源码测试图像下载总结一、结…

如何从回收站恢复已删除的文件

我们在各个领域都使用计算机。无论是专业工作还是个人工作,我们在生活中总能找到计算机的用途。因此,我们在很大程度上依赖于我们的计算机。计算机是办公室和企业部门使用的高效机器。 人们使用个人计算机发送电子邮件、创建文档、听音乐和观看视频等等…

十二.Jenkins持续集成

十二.Jenkins持续集成 一.安装jenkins 1.下载 Jenkins下载地址:http://jenkins-ci.org/ 或 https://mirrors.jenkins-ci.org/redhat/2.安装 可以通过官网的安装方式来安装 安装完后,需要修改以下的配置 vim /usr/lib/systemd/system/jenkins.servic…