卷积神经网络(CNN)鲜花的识别

news2025/1/10 16:46:56

文章目录

  • 前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
      • 我的环境:
    • 2. 导入数据
    • 3. 检查数据
  • 二、数据预处理
    • 1. 加载数据
    • 2. 可视化数据
    • 3. 再次检查数据
    • 4. 配置数据集
  • 三、构建CNN网络
  • 四、编译
  • 五、训练模型
  • 六、模型评估

前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

2. 导入数据

import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
import tensorflow as tf

from tensorflow import keras
from tensorflow.keras import layers,models

import pathlib
dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz"

data_dir = tf.keras.utils.get_file(fname    = 'flower_photos', # 下载到本地后的文件名称
                                   origin   = dataset_url,     # 数据集(Dataset)的URL路径;
                                   untar    = True,            # 是否解压文件
                                   cache_dir= 'DL-100-days')

data_dir = pathlib.Path(data_dir)
data_dir
PosixPath('/tmp/.keras/datasets/flower_photos')

3. 检查数据

image_count = len(list(data_dir.glob('*/*.jpg')))

print("图片总数为:",image_count)
roses = list(data_dir.glob('roses/*'))
PIL.Image.open(str(roses[1]))

在这里插入图片描述

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

batch_size = 32
img_height = 180
img_width = 180
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 3670 files belonging to 5 classes.
Using 2936 files for training.
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 3670 files belonging to 5 classes.
Using 734 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)
['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips']

2. 可视化数据

plt.figure(figsize=(20, 10))

for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

在这里插入图片描述

3. 再次检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(32, 180, 180, 3)
(32,)
  • Image_batch是形状的张量(32,180,180,3)。这是一批形状180x180x3的32张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(32,)的张量,这些标签对应32张图片

4. 配置数据集

prefetch()功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态:

在这里插入图片描述

使用prefetch()可显著减少空闲时间:

在这里插入图片描述

  • cache():将数据集缓存到内存当中,加速运行
AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

三、构建CNN网络

卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入,fashion_mnist 数据集中的图片,形状是 (28, 28, 1)即灰度图像。我们需要在声明第一层时将形状赋值给参数input_shape

num_classes = 5

model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3
    layers.MaxPooling2D((2, 2)),                   # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.MaxPooling2D((2, 2)),                   # 池化层2,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    
    layers.Flatten(),                       # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取
    layers.Dense(num_classes)               # 输出层,输出预期结果
])

model.summary()  # 打印网络结构
Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
rescaling_1 (Rescaling)      (None, 180, 180, 3)       0         
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 178, 178, 16)      448       
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 89, 89, 16)        0         
_________________________________________________________________
conv2d_4 (Conv2D)            (None, 87, 87, 32)        4640      
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 43, 43, 32)        0         
_________________________________________________________________
conv2d_5 (Conv2D)            (None, 41, 41, 64)        18496     
_________________________________________________________________
flatten_1 (Flatten)          (None, 107584)            0         
_________________________________________________________________
dense_2 (Dense)              (None, 128)               13770880  
_________________________________________________________________
dense_3 (Dense)              (None, 5)                 645       
=================================================================
Total params: 13,795,109
Trainable params: 13,795,109
Non-trainable params: 0
_________________________________________________________________

四、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于测量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

五、训练模型

history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=10
)
Epoch 1/10
92/92 [==============================] - 9s 29ms/step - loss: 1.7851 - accuracy: 0.3435 - val_loss: 1.0564 - val_accuracy: 0.5640
Epoch 2/10
92/92 [==============================] - 1s 11ms/step - loss: 1.0037 - accuracy: 0.5867 - val_loss: 1.0490 - val_accuracy: 0.5708
Epoch 3/10
92/92 [==============================] - 1s 11ms/step - loss: 0.8206 - accuracy: 0.6746 - val_loss: 0.9763 - val_accuracy: 0.6158
Epoch 4/10
92/92 [==============================] - 1s 12ms/step - loss: 0.6061 - accuracy: 0.7864 - val_loss: 0.9745 - val_accuracy: 0.6158
Epoch 5/10
92/92 [==============================] - 1s 12ms/step - loss: 0.3319 - accuracy: 0.8929 - val_loss: 1.2550 - val_accuracy: 0.6076
Epoch 6/10
92/92 [==============================] - 1s 11ms/step - loss: 0.1607 - accuracy: 0.9473 - val_loss: 1.4897 - val_accuracy: 0.6172
Epoch 7/10
92/92 [==============================] - 1s 11ms/step - loss: 0.0864 - accuracy: 0.9757 - val_loss: 1.5388 - val_accuracy: 0.6226
Epoch 8/10
92/92 [==============================] - 1s 12ms/step - loss: 0.0621 - accuracy: 0.9818 - val_loss: 2.0122 - val_accuracy: 0.6008
Epoch 9/10
92/92 [==============================] - 1s 11ms/step - loss: 0.0390 - accuracy: 0.9893 - val_loss: 1.9353 - val_accuracy: 0.6267
Epoch 10/10
92/92 [==============================] - 1s 11ms/step - loss: 0.0061 - accuracy: 0.9995 - val_loss: 2.1597 - val_accuracy: 0.6335

六、模型评估

plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()

test_loss, test_acc = model.evaluate(val_ds, verbose=2)

在这里插入图片描述

从上面可以看出随着迭代次数的增加,训练准确率与验证准确率之间的差距逐步增加,这是由于过拟合导致.

print("验证准确率为:",test_acc)
验证准确率为: 0.6035422086715698
[0.5, 1])
plt.legend(loc='lower right')
plt.show()

test_loss, test_acc = model.evaluate(val_ds, verbose=2)

[外链图片转存中…(img-fF61lXFP-1700232748127)]

从上面可以看出随着迭代次数的增加,训练准确率与验证准确率之间的差距逐步增加,这是由于过拟合导致.

print("验证准确率为:",test_acc)
验证准确率为: 0.6035422086715698

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1221009.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

串口通信原理及应用

Content 1. 前言介绍2. 连接方式3. 数据帧格式4. 代码编写 1. 前言介绍 串口通信是一种设备间非常常用的串行接口,以比特位的形式发送或接收数据,由于成本很低,容易使用,工程师经常使用这种方式来调试 MCU。 串口通信应用广泛&a…

【教3妹学编程-算法题】高访问员工

2哥 : 3妹,今天周五怎么还下班这么晚啊?这么晚了才回来 3妹:项目快上线了, 最近事情比较多,再累也要干, 撸起袖子加油干! 2哥 : 辛苦辛苦, 哎,你看到王自如格力那个采访了…

叮!您收到了一封来自达坦科技的Hackthon邀请函

DatenLord Hackathon 2023正式启动!达坦科技基于其跨云分布式文件系统DatenLord项目,结合AI大模型时代背景,搭建了擂台,在此正式向您发出邀约! 本次大赛赛题深刻有趣,奖品丰厚多样,借此机会您不…

034、test

之——全纪录 目录 之——全纪录 杂谈 正文 1.下载处理数据 2.数据集概览 3.构建自定义dataset 4.初始化网络 5.训练 杂谈 综合方法试一下。 leaves 1.下载处理数据 从官网下载数据集:Classify Leaves | Kaggle 解压后有一个图片集,一个提交示…

JavaWeb[总结]

文章目录 一、Tomcat1. BS 与 CS 开发介绍1.1 BS 开发1.2 CS 开发 2. 浏览器访问 web 服务过程详解(面试题)2.1 回到前面的 JavaWeb 开发技术栈图2.2 浏览器访问 web 服务器文件的 UML时序图(过程) ! 二、动态 WEB 开发核心-Servlet1. 为什么会出现 Servlet2. 什么是…

【C++】模版-初阶

目录 泛型编程--模版 函数模版 类模版 泛型编程--模版 函数模版 如何实现一个通用的交换函数呢?void Swap(int& left, int& right){int temp left;left right;right temp;}void Swap(double& left, double& right){double temp left;left right;righ…

jbase虚拟M层的设计

对于只是自己产品内部使用的打印程序来说(比如打印收费单,打印结算单等),打印逻辑写在js,获取其他层都是没毛病的。但是对于类型检验报告这种打印来说,打印格式控制逻辑写在js层是百分百不行的。因为检验报…

数据结构-哈希表(C语言)

哈希表的概念 哈希表就是: “将记录的存储位置与它的关键字之间建立一个对应关系,使每个关键字和一个唯一的存储位置对 应。” 哈希表又称:“散列法”、“杂凑法”、“关键字:地址法”。 哈希表思想 基本思想是在关键字和存…

Express.js 与 Nest.js对比

Express.js 与 Nest.js对比 自从 Node.js 发布以来,Javascript 在后端领域的使用有所增加。由于 Node.js 的使用越来越多,每天都会有新的框架和工具发布。Express 和 Nest 是使用 Node.js 创建后端应用程序的最著名的框架之一,在本文中&…

数据结构与算法之美学习笔记:20 | 散列表(下):为什么散列表和链表经常会一起使用?

目录 前言LRU 缓存淘汰算法Redis 有序集合Java LinkedHashMap解答开篇 & 内容小结 前言 本节课程思维导图: 今天,我们就来看看,在这几个问题中,散列表和链表都是如何组合起来使用的,以及为什么散列表和链表会经常…

【代码随想录】算法训练计划21、22

day 21 1、530. 二叉搜索树的最小绝对差 题目: 给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。 差值是一个正数,其数值等于两值之差的绝对值。 思路: 利用了二叉搜索树的中序遍历特性用了双指…

线性表的概念

目录 1.什么叫线性表2.区分线性表的题 1.什么叫线性表 线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列、字符串… 线性表在逻辑上是…

2.4 矩阵的运算法则

矩阵是数字或 “元素” 的矩形阵列。当矩阵 A A A 有 m m m 行 n n n 列,则是一个 m n m\times n mn 的矩阵。如果矩阵的形状相同,则它们可以相加。矩阵也可以乘上任意常数 c c c。以下是 A B AB AB 和 2 A 2A 2A 的例子,它们都是 …

JSplacement丨随机生成置换贴图

界面很简单,虽然是英文,但基本也能看懂,参数调一调,随机生成不重复的8K高清图片。 这种图片可能对普通人感觉很奇怪,有什么用呢?会C4D建模渲染的同学应该会明白,特别是建一些科技类的场景背景&a…

短期经济波动:均衡国民收入决定理论(三)

短期经济波动:国民收入决定理论(三) 文章目录 短期经济波动:国民收入决定理论(三)[toc]1 总需求曲线及其变动1.1 总需求曲线含义1.2 总需求曲线推导1.2.1 代数推导1.2.2 几何推导 1.3 AD曲线及其变动1.3.1 扩张性财政政策1.3.2 扩张性货币政策 2 总供给曲…

2023年AI生成音频研究报告

第一章 行业概况 1.1 定义 AI音频生成行业,作为人工智能生成内容(AIGC)技术渗透的关键领域,正迅速成为技术革新的前沿阵地。这一领域专注于运用先进的人工智能技术和复杂算法来创造音频内容,覆盖了语音合成、音乐制作…

常见面试题-HashMap源码

了解 HashMap 源码吗? 参考文章:https://juejin.cn/post/6844903682664824845 https://blog.51cto.com/u_15344989/3655921 以下均为 jdk1.8 的 HashMap 讲解 首先,HashMap 的底层结构了解吗? 底层结构为:数组 链…

C语言--给定一行字符串,获取其中最长单词【图文详解】

一.问题描述 给定一行字符串,获取其中最长单词。 比如:给定一行字符串: hello wo shi xiao xiao su 输出:hello 二.题目分析 “打擂台算法”,具体内容小伙伴们可以参考前面的内容。 三.代码实现 char* MaxWord(const char* str)…

初始MySQL(七)(MySQL表类型和存储引擎,MySQL视图,MySQL用户管理)

目录 MySQL表类型和存储引擎 MyISAM MEMORY MySQL视图 我们先说说视图的是啥? 视图的一些使用细节 MySQL用户管理 原因 常见操作 MySQL表类型和存储引擎 -- 查看所有的存储引擎 SHOW ENGINES 我们常见的表有MyISAM InnoDB MEMORY 1.MyISAM不支持事务,也不支持外…

群晖7.2版本安装CloudDriver2(套件)挂载alist(xiaoya)到本地

CloudDrive是一个强大的多云盘管理工具,为用户提供包含云盘本地挂载的一站式的多云盘解决方案。挂载到本地后,可以像本地文件一样进行操作。 一、套件库添加矿神源 二、安装CloudDriver2 1、搜索安装 搜索框输入【clouddrive】,搜索到Clou…