YOLOv5 配置C2模块构造新模型

news2025/1/10 22:34:56

🍨 本文为[🔗365天深度学习训练营学习记录博客
🍦 参考文章:365天深度学习训练营
🍖 原作者:[K同学啊]
🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)

目标:在YOLOv5s网络模型中,修改common.py、yolo.py、yolov5s.yaml文件,将C2模块插入第2层与第3层之间,且跑通YOLOv5s。

操作步骤:

1.在common.py文件中插入C2模块

class C2(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

 

2.修改yolo.py文件,改动模型框架

def parse_model(d, ch):  # model_dict, input_channels(3)
    # Parse a YOLOv5 model.yaml dictionary
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        LOGGER.info(f"{colorstr('activation:')} {act}")  # print
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            with contextlib.suppress(NameError):
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in {
                Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        # TODO: channel, gw, gd
        elif m in {Detect, Segment}:
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
            if m is Segment:
                args[3] = make_divisible(args[3] * gw, 8)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        else:
            c2 = ch[f]

        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

函数用于将模型的模块拼接起来,搭建完成的网络模型。后续如果需要动模型框架的话,需要对这个函数做相应的改动。

修改前:

修改后:

 3.yolov5s.yaml文件中加入C2层

4.命令窗运行

python train.py --img 900 --batch 2 --epoch 100 --data D:/yolov5-master/data/ab.yaml --cfg D:/yolov5-master/models/yolov5s.yaml --weights yolov5s.pt

运行结果: 

D:\yolov5-master>python train.py --img 900 --batch 2 --epoch 100 --data D:/yolov5-master/data/ab.yaml --cfg D:/yolov5-master/models/yolov5s.yaml --weights yolov5s.pt
train: weights=yolov5s.pt, cfg=D:/yolov5-master/models/yolov5s.yaml, data=D:/yolov5-master/data/ab.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=100, batch_size=2, imgsz=900, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5
YOLOv5  2023-10-15 Python-3.10.7 torch-2.0.1+cpu CPU

hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5  runs in Comet
TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=4

                 from  n    params  module                                  arguments
Traceback (most recent call last):
  File "D:\yolov5-master\train.py", line 647, in <module>
    main(opt)
  File "D:\yolov5-master\train.py", line 536, in main
    train(opt.hyp, opt, device, callbacks)
  File "D:\yolov5-master\train.py", line 130, in train
    model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
  File "D:\yolov5-master\models\yolo.py", line 185, in __init__
    self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
  File "D:\yolov5-master\models\yolo.py", line 319, in parse_model
    BottleneckCSP, C2, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
NameError: name 'C2' is not defined. Did you mean: 'c2'?

D:\yolov5-master>python train.py --img 900 --batch 2 --epoch 100 --data D:/yolov5-master/data/ab.yaml --cfg D:/yolov5-master/models/yolov5s.yaml --weights yolov5s.pt
train: weights=yolov5s.pt, cfg=D:/yolov5-master/models/yolov5s.yaml, data=D:/yolov5-master/data/ab.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=100, batch_size=2, imgsz=900, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5
YOLOv5  2023-10-15 Python-3.10.7 torch-2.0.1+cpu CPU

hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5  runs in Comet
TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=4

                 from  n    params  module                                  arguments
  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]
  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]
  2                -1  1     18816  models.common.C3                        [64, 64, 1]
  3                -1  1     18816  models.common.C2                        [64, 64, 1]
  4                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]
  5                -1  2    115712  models.common.C3                        [128, 128, 2]
  6                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]
  7                -1  3    625152  models.common.C3                        [256, 256, 3]
  8                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]
  9                -1  1   1182720  models.common.C3                        [512, 512, 1]
 10                -1  1    656896  models.common.SPPF                      [512, 512, 5]
 11                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]
 12                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
 13           [-1, 6]  1         0  models.common.Concat                    [1]
 14                -1  1    361984  models.common.C3                        [512, 256, 1, False]
 15                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]
 16                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
 17           [-1, 4]  1         0  models.common.Concat                    [1]
 18                -1  1     90880  models.common.C3                        [256, 128, 1, False]
 19                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]
 20          [-1, 14]  1         0  models.common.Concat                    [1]
 21                -1  1    329216  models.common.C3                        [384, 256, 1, False]
 22                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]
 23          [-1, 10]  1         0  models.common.Concat                    [1]
 24                -1  1   1313792  models.common.C3                        [768, 512, 1, False]
 25      [17, 20, 23]  1     38097  models.yolo.Detect                      [4, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [256, 384, 768]]
YOLOv5s summary: 232 layers, 7226897 parameters, 7226897 gradients, 17.2 GFLOPs

Transferred 49/379 items from yolov5s.pt
WARNING  --img-size 900 must be multiple of max stride 32, updating to 928
optimizer: SGD(lr=0.01) with parameter groups 62 weight(decay=0.0), 65 weight(decay=0.0005), 65 bias
train: Scanning D:\yolov5-master\Y2\train... 1 images, 0 backgrounds, 159 corrupt: 100%|██████████| 160/160 [00:13<00:0
train: WARNING   D:\yolov5-master\Y2\images\fruit1.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit1.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit10.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit10.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit100.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit100.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit102.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit102.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit103.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit103.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit104.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit104.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit106.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit106.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit108.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit108.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit109.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit109.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit11.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit11.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit110.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit110.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit111.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit111.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit113.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit113.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit114.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit114.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit115.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit115.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit116.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit116.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit117.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit117.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit118.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit118.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit119.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit119.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit12.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit12.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit120.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit120.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit121.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit121.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit122.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit122.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit123.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit123.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit124.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit124.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit125.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit125.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit127.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit127.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit129.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit129.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit13.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit13.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit130.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit130.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit131.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit131.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit132.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit132.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit133.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit133.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit134.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit134.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit135.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit135.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit136.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit136.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit138.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit138.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit14.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit14.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit142.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit142.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit143.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit143.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit144.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit144.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit145.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit145.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit147.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit147.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit148.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit148.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit149.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit149.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit15.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit15.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit151.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit151.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit152.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit152.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit155.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit155.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit156.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit156.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit157.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit157.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit158.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit158.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit159.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit159.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit16.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit16.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit161.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit161.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit162.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit162.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit163.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit163.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit164.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit164.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit165.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit165.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit167.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit167.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit168.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit168.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit169.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit169.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit17.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit17.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit170.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit170.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit171.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit171.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit172.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit172.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit173.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit173.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit174.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit174.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit175.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit175.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit176.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit176.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit177.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit177.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit178.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit178.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit179.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit179.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit18.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit18.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit180.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit180.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit181.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit181.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit182.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit182.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit183.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit183.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit184.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit184.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit185.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit185.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit186.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit186.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit187.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit187.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit188.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit188.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit19.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit19.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit196.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit196.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit197.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit197.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit198.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit198.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit199.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit199.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit2.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit2.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit200.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit200.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit202.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit202.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit208.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit208.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit209.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit209.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit211.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit211.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit22.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit22.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit23.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit23.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit25.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit25.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit26.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit26.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit27.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit27.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit28.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit28.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit29.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit29.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit3.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit3.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit30.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit30.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit31.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit31.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit33.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit33.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit34.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit34.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit35.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit35.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit36.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit36.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit38.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit38.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit39.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit39.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit4.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit4.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit40.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit40.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit43.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit43.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit44.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit44.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit45.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit45.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit46.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit46.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit49.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit49.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit50.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit50.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit51.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit51.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit52.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit52.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit53.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit53.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit54.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit54.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit55.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit55.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit57.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit57.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit59.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit59.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit6.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit6.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit60.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit60.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit61.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit61.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit62.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit62.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit63.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit63.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit65.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit65.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit66.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit66.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit68.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit68.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit69.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit69.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit7.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit7.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit70.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit70.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit71.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit71.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit73.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit73.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit74.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit74.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit75.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit75.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit77.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit77.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit78.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit78.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit79.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit79.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit80.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit80.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit81.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit81.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit82.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit82.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit83.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit83.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit85.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit85.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit86.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit86.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit87.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit87.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit88.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit88.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit89.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit89.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit90.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit90.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit91.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit91.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit94.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit94.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit95.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit95.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit97.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit97.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit98.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit98.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit99.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit99.png'
train: WARNING  Cache directory D:\yolov5-master\Y2 is not writeable: [WinError 183] : 'D:\\yolov5-master\\Y2\\train.cache.npy' -> 'D:\\yolov5-master\\Y2\\train.cache'
val: Scanning D:\yolov5-master\Y2\val.cache... 1 images, 0 backgrounds, 19 corrupt: 100%|██████████| 20/20 [00:00<?, ?i
val: WARNING   D:\yolov5-master\Y2\images\fruit107.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit107.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit112.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit112.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit139.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit139.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit140.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit140.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit141.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit141.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit146.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit146.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit20.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit20.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit210.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit210.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit24.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit24.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit32.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit32.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit41.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit41.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit47.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit47.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit48.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit48.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit5.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit5.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit64.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit64.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit8.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit8.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit84.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit84.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit92.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit92.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit96.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit96.png'

AutoAnchor: 4.33 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset
Plotting labels to runs\train\exp12\labels.jpg...
Image sizes 928 train, 928 val
Using 0 dataloader workers
Logging results to runs\train\exp12
Starting training for 100 epochs...

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       0/99         0G     0.1123    0.06848    0.04815          7        928:   0%|          | 0/1 [00:01<?, ?it/s]WARNING  TensorBoard graph visualization failure Sizes of tensors must match except in dimension 1. Expected size 58 but got size 57 for tensor number 1 in the list.
       0/99         0G     0.1123    0.06848    0.04815          7        928: 100%|██████████| 1/1 [00:02<00:00,  2.97
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3    0.00439      0.333     0.0474     0.0121

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       1/99         0G     0.1105    0.06846    0.04628          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.51
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3    0.00926      0.333     0.0332     0.0154

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       2/99         0G     0.1139    0.05816    0.04684          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3    0.00926      0.333     0.0332     0.0154

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       3/99         0G    0.07328    0.05078    0.03088          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.51
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3     0.0119      0.333     0.0123    0.00369

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       4/99         0G    0.06693    0.05186    0.03044          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.47
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3     0.0119      0.333     0.0123    0.00369

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       5/99         0G     0.1102    0.09702    0.04647         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.44
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3     0.0119      0.333     0.0123    0.00369

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       6/99         0G     0.1147    0.07053    0.04376          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.48
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       7/99         0G    0.06716    0.05544    0.02962          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.43
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       8/99         0G     0.1161    0.05993    0.04253          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.44
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       9/99         0G     0.1187    0.05657     0.0432          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      10/99         0G     0.1163    0.09305    0.04868         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.50
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      11/99         0G    0.07575    0.04969    0.03171          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.42
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      12/99         0G     0.1092    0.09129      0.045         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.43
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      13/99         0G     0.1003    0.05476    0.04605          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.44
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      14/99         0G    0.07006    0.05166    0.03166          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.43
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      15/99         0G     0.1156    0.05315    0.04495          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.43
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      16/99         0G     0.1143     0.0559      0.045          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.48
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      17/99         0G    0.08845     0.0449    0.02645          2        928: 100%|██████████| 1/1 [00:01<00:00,  1.43
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      18/99         0G     0.1189    0.05909    0.04975          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.44
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      19/99         0G     0.1113    0.05739    0.04547          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.46
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      20/99         0G      0.117    0.07437    0.04842         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      21/99         0G      0.109    0.06155     0.0505          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.44
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      22/99         0G     0.1073     0.1035    0.04515         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.46
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      23/99         0G     0.1257     0.0527    0.04264          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      24/99         0G     0.1036     0.0745    0.04745          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.50
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      25/99         0G     0.1112     0.1054    0.04881         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      26/99         0G     0.1053    0.08021    0.04656          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.44
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      27/99         0G     0.1208    0.05651    0.04577          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      28/99         0G    0.07633     0.0537    0.03023          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.46
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      29/99         0G     0.1162    0.05969    0.04597          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.44
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      30/99         0G     0.1117    0.07415    0.04961          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      31/99         0G     0.1132    0.06359    0.04704          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.46
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      32/99         0G    0.08006    0.05026    0.02591          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      33/99         0G     0.1117      0.104    0.04704         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      34/99         0G     0.1135    0.06241    0.04401          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      35/99         0G     0.1117    0.07476    0.04524          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      36/99         0G     0.1134    0.09759    0.04479         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.51
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      37/99         0G     0.1184    0.06637    0.04515          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      38/99         0G    0.08484    0.04526    0.02921          2        928: 100%|██████████| 1/1 [00:01<00:00,  1.50
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      39/99         0G    0.09749     0.0813    0.04582          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.57
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      40/99         0G     0.1117    0.07415      0.046          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.63
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      41/99         0G     0.1117    0.07245    0.04489          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.68
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      42/99         0G     0.1094    0.05986    0.04839          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.71
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      43/99         0G     0.1097     0.0697    0.04865          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.65
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      44/99         0G     0.1108    0.09187    0.04328         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.57
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      45/99         0G     0.1126    0.05993      0.047          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.52
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      46/99         0G     0.0688    0.05024    0.03075          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.53
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      47/99         0G      0.112    0.09688    0.04424         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.51
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      48/99         0G     0.1166    0.06569    0.04565          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.53
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      49/99         0G     0.1118    0.05801    0.04417          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.51
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      50/99         0G     0.1097     0.1048    0.04665         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.51
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      51/99         0G     0.1218    0.06085    0.04525          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.83
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      52/99         0G     0.1056    0.08698    0.04532          9        928: 100%|██████████| 1/1 [00:01<00:00,  1.66
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      53/99         0G    0.06761    0.05242    0.03217          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.68
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      54/99         0G     0.1044     0.1022     0.0441         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.60
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      55/99         0G     0.1269    0.05652    0.04289          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.87
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      56/99         0G     0.1112     0.0772    0.04683          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.86
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      57/99         0G     0.1144    0.05499    0.04611          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.78
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      58/99         0G    0.07043     0.0666     0.0297          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.71
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      59/99         0G     0.1092    0.09867    0.04592         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.72
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      60/99         0G       0.12    0.05285    0.04611          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.71
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      61/99         0G     0.0728    0.05391    0.02953          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.75
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      62/99         0G     0.1164    0.05441    0.04357          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.91
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      63/99         0G     0.1123     0.1039     0.0476         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.82
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      64/99         0G     0.1089      0.064    0.04559          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.69
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      65/99         0G     0.1152    0.07665    0.04802          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.64
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      66/99         0G     0.1186    0.06205     0.0432          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.74
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      67/99         0G      0.114    0.06644    0.04486          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.88
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      68/99         0G     0.1118    0.05814    0.04571          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.89
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      69/99         0G      0.106     0.0762    0.04522          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.88
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      70/99         0G     0.1068    0.06769      0.048          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.71
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      71/99         0G       0.11     0.1035    0.04768         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.64
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      72/99         0G     0.1071    0.05783    0.04588          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.71
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      73/99         0G      0.107    0.06332    0.04598          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.72
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      74/99         0G     0.1127    0.09514    0.04832         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.71
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      75/99         0G    0.07471    0.05085    0.03363          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.62
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      76/99         0G    0.07295    0.05077    0.03028          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.68
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      77/99         0G     0.1221     0.0522     0.0502          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.73
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      78/99         0G     0.1159    0.05984    0.04441          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.86
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      79/99         0G     0.0764    0.05256    0.03172          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.81
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      80/99         0G    0.07563    0.05452    0.03032          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.73
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      81/99         0G    0.06719     0.0531    0.02945          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.67
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      82/99         0G     0.1076    0.06686    0.04691          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.68
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      83/99         0G     0.1112    0.07135    0.04413          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.70
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      84/99         0G     0.1116    0.09399    0.04413         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.63
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      85/99         0G     0.1116    0.06021    0.04635          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.67
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      86/99         0G     0.1096     0.1032    0.04634         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.66
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      87/99         0G     0.1143    0.05941    0.04396          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.66
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      88/99         0G     0.1161     0.0518    0.04673          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.66
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      89/99         0G     0.1106    0.05528    0.04363          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.65
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      90/99         0G     0.1238    0.05427    0.04809          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.66
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      91/99         0G     0.1104    0.06561    0.04492          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.67
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      92/99         0G     0.1137    0.08532    0.04445         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.70
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      93/99         0G     0.1125    0.07016    0.04628          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.65
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      94/99         0G     0.1116    0.05724    0.04418          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.63
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      95/99         0G     0.1124     0.1026    0.04744         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.77
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      96/99         0G      0.117    0.05599    0.04682          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.71
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      97/99         0G      0.124     0.0617    0.04387          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.75
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      98/99         0G     0.1126     0.1009    0.04399         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.64
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      99/99         0G    0.06937    0.05515    0.03017          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.68
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

100 epochs completed in 0.067 hours.
Optimizer stripped from runs\train\exp12\weights\last.pt, 15.0MB
Optimizer stripped from runs\train\exp12\weights\best.pt, 15.0MB

Validating runs\train\exp12\weights\best.pt...
Fusing layers...
YOLOv5s summary: 170 layers, 7217201 parameters, 0 gradients, 17.0 GFLOPs
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3     0.0115      0.333     0.0369      0.012
                banana          1          1          0          0          0          0
           snake fruit          1          1          0          0          0          0
             pineapple          1          1     0.0345          1      0.111     0.0359
Results saved to runs\train\exp12

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1220740.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Kingbase FlySync】界面化管控平台:1.安装部署与用户创建

同步软件安装部署与用户创建 概述准备环境目标资源1.测试虚拟机下载地址包含node1,node22.KFS管控平台工具下载地址3.临时授权下载地址 实操&#xff1a;同步软件安装部署1.node1准备安装环境(1)增加flysync 用户并设置密码(2)调整flysync的最大文件句柄数&#xff08;open fil…

蓝牙耳机仓设计的单芯片解决方案

对于一款优秀的TWS耳机来说&#xff0c;除了耳机本身的音频配置&#xff0c;充电仓也是极为重要的一环。因为与传统有线耳机由设备电池供电不同&#xff0c;缺少了耳机仓&#xff0c;TWS耳机就完全的失去了充电的途径&#xff0c;设备在耗尽电量基本就告别使用了&#xff0c;因…

使用Sqoop命令从Oracle同步数据到Hive,修复数据乱码 %0A的问题

一、创建一张Hive测试表 create table test_oracle_hive(id_code string,phone_code string,status string,create_time string ) partitioned by(partition_date string) ROW FORMAT DELIMITED FIELDS TERMINATED BY ,; 创建分区字段partition_date&#xff0c…

【Qt之QStandardItemModel】使用,tableview、listview、treeview设置模型

1. 引入 QStandardItemModel类提供了一个通用的模型&#xff0c;用于存储自定义数据。 以下是其用法&#xff1a;该类属于gui模块&#xff0c;因此在.pro中&#xff0c;需添加QT gui&#xff0c;如果已存在&#xff0c;则无需重复添加。 首先&#xff0c;引入头文件&#xff…

Python---练习:编写一段Python代码,生成一个随机的4位验证码

案例&#xff1a;编写一段Python代码&#xff0c;生成一个随机的4位验证码 提前&#xff1a;定义一个字符串 str1 "23456789abcdefghijkmnpqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ" 编写Python代码&#xff1a; ① 思考&#xff1a;如果只生成4个字符的验证码&…

go语言 | 图解字节青训营抖音(一)

前言 本文大致介绍了本人及本人所在小组为第五届字节跳动青训营后端专场大项目需求 —— 「实现一个极简版抖音」的部分实现细节。 需求 本届后端青训营大项目要求实现一个极简版抖音的后端服务&#xff0c;该后端服务通过 HTTP 协议向已被设计好的前端 App 传递数据&#xf…

在listener.ora配置文件中配置listener 1527的监听并且使用tnsnames连接测试

文章目录 前言&#xff1a;一、命令语句实现1、监听介绍2、编辑 listener.ora 文件&#xff1a;寻找配置文件对配置文件进行配置 3、重启监听4、配置TNS 二、图形化界面实现1、listener.ora文件配置2、tnsnames.ora文件配置 三、测试连接 前言&#xff1a; 命令实现和图形化实…

网站页头被挂马状态及新增了index.html文件解决思路

今天网站刚新增了篇了文章《从nginx层阻断可执行的php 防止宝塔站点挂马》,整体测试下来还是不靠谱,设置后导致所有PHP文件都打不开了。 经过不断的查看日志和搜索办法总算告一段落,后续待观察。原因如下,多个网站目录新增了index.html文件,看时间是近两天上传的。 网站代…

超级微同城源码系统 轻松制作本地生活服务平台 源码完全开源可二次开发 带完整的搭建教程

现如今&#xff0c;越来越多的人开始依赖网络进行日常生活。各种生活服务平台如雨后春笋般涌现&#xff0c;为人们提供了方便快捷的服务。然而&#xff0c;对于很多传统企业来说&#xff0c;如何将线下业务转移到线上&#xff0c;如何提高服务质量等问题成为了他们面临的重要挑…

YOLO目标检测——机油泄露检测数据集下载分享【含对应voc、coco和yolo三种格式标签】

实际项目应用&#xff1a;机械设备维护、工业生产监控、环保监管等数据集说明&#xff1a;机油泄露检测数据集&#xff0c;真实场景的高质量图片数据&#xff0c;数据场景丰富标签说明&#xff1a;使用lableimg标注软件标注&#xff0c;标注框质量高&#xff0c;含voc(xml)、co…

搭建大型分布式服务(三十六)SpringBoot 零代码方式整合多个kafka数据源

系列文章目录 文章目录 系列文章目录前言一、本文要点二、开发环境三、创建项目四、测试一下五、小结 前言 让我们来看一下网上是怎样使用SpringBoot整合kafka数据源的&#xff0c;都存在哪些痛点&#xff1f; 痛点一&#xff1a; 手撸kafka配置代码&#xff0c;各种硬编码&a…

cocos3.4.2 2d射线检测 和 animation动画

2D的射线检测 ,注:目标必须有2d刚体和2d碰撞器 ,且项目设置内必须是这个物理系统 //起点位置let objs new Vec2(this.node.getWorldPosition().x, this.node.getWorldPosition().y);// 终点 let obje new Vec2(objs.x 100, objs.y);// 射线检测let results PhysicsSystem2…

Unity中Shader纹理的环绕方式

文章目录 前言一、修改环绕方式前的设置准备二、在纹理的设置面板可以修改环绕方式三、在Shader中&#xff0c;实现纹理的环绕方式切换1、在属性面板定义一个和纹理面板一样的纹理环绕方式下拉框2、在Pass中&#xff0c;定义枚举对应的变体3、在片元着色器中&#xff0c;纹理采…

【数据结构与算法】JavaScript实现树结构(一)

文章目录 一、树结构简介1.1.简单了解树结构1.2.树结构的表示方式 二、二叉树2.1.二叉树简介2.2.特殊的二叉树2.3.二叉树的数据存储 三、二叉搜索树3.1.认识二叉搜索树3.2.二叉搜索树应用举例 一、树结构简介 1.1.简单了解树结构 什么是树&#xff1f; 真实的树&#xff1a;…

Redis数据库双写一致性解决方案

程序员的公众号&#xff1a;源1024&#xff0c;获取更多资料&#xff0c;无加密无套路&#xff01; 最近整理了一份大厂面试资料《史上最全大厂面试题》&#xff0c;Springboot、微服务、算法、数据结构、Zookeeper、Mybatis、Dubbo、linux、Kafka、Elasticsearch、数据库等等 …

SpringCloud微服务:Nacos和Eureka的区别

目录 配置&#xff1a; 区别&#xff1a; ephemeral设置为true时 ephemeral设置为false时&#xff08;这里我使用的服务是order-service&#xff09; 1. Nacos与eureka的共同点 都支持服务注册和服务拉取 都支持服务提供者心跳方式做健康检测 2. Nacos与Eu…

vscode调试pytorch的DistributedDataParallel代码

这里写自定义目录标题 一、查找launch.py二、修改launch.json三、特别提醒3.1 错误的写法3.2 正确的写法 一、查找launch.py 使用代码。 find / -name launch.py | grep distributed得到的结果如下 这里我们得到了两个结果&#xff0c;看目标文件的路径名&#xff0c;第二个…

深度学习到智能小车(1)深度学习框架

0.前提 最近新开了一门叫机器学习的课程&#xff0c;老师一直在跟我们讲一些有关这方面的知识&#xff0c;告诉我们一定要学好数学&#xff0c;因为数学是算法的基础。我手上的donkeycar刚好也涉及到Keras深度神经网络&#xff0c;所以出于好奇我去图书馆借回了一本叫《Keras深…

一键免费去除视频水印和字幕的AI工具

最近有学员经常让我分享好用的智能抹除视频水印字幕AI工具&#xff0c;今天就给大家分享一个我经常用到的这款工具——腾讯智影&#xff0c;这个平台提供的智能抹除功能&#xff0c;借助这个工具我们可以将视频中不需要的字幕或者水印删除掉。 不过这款工具每天有三次免费次数…

端口映射软件

今天给大家介绍一个自己制作的工具&#xff0c;本工具可以把本地自己的项目映射到外网可以访问,自己有域名可以使用自己的,没有可以用软件自带的三级域名! Token获取 地址&#xff1a;传送 打开上面网址注册账号&#xff0c;然后点击验证&#xff0c;复制里面的值即可。 软件…